

Integrated Technologies, Inc.

UW-FAA Center of Excellence on Advanced Materials.

1-29-2004

Fabrication

Outline

- Background
- Capabilities
- Experience
- Vision

Background

Intec was formed in 1989.

Maryann Einarson Brian R. Coxon Robert C. LaMantea Rod Wishart

- President
- Director of Engineering
- Director of Sales & Marketing
- Operations Manager

Client List (Selected)

Boeing (Hughes) Space & Communication Allied Signal Bell Helicopter Boeing **Phillips Petroleum** Cytec **Rhone - Poulenc Chemical Rockwell - Rocketdyne** E.I. DuPont de Nemours and Co. **Shell Development** Alenia (GEC) Marconi **Toray Composites America General Electric** Hexcel **Aviation Partners**

Teledesic Lawrence Livermore Labs Lockheed - Martin **Northrop - Grumman Aviation Partners Inc. Pratt & Whitney K2** Furon **Rohr Industries BF Goodrich-Tramco** TRW Sea Launch **YLA Incorporated 3M** Honeywell

Corporate Philosophy

Intec's goal is to maintain a "materials technology center" offering our clients the full range of services for development, evaluation, characterization and use of materials.

- 1) Materials/Process Development
- 2) Materials Characterization
- 3) Component Design, Fabrication, Testing and Machining
- 4) Preliminary Design & Product Development
- 5) Consulting Services

Capabilities

-Testing-

- Automated static testing (tens, comp, shear, toughness, etc.)
- Fatigue, damage tolerance and crack growth
- Loads up to 2.5 million lbs. (data channels 400+)
- Environments (-400°F to 1,000°F, hydraulic grips to 600°F)
- High speed video, real time Moiré, photoelasticity
- Ultrasonic, microscopy and physical property laboratories
- Thermal analysis (DMA, TMA, DSC, CTE, CME)
- Load Floor Strong Back
- Low and high velocity instrumented impact of large structural panels

Web Based Monitoring Capabilities

WBTM uses a synchronized video/sound signal along with digital test data (load, stroke, & strain) to provide clear picture of the test and test data as it is occurring.

Selected Certifications

-Testing - Manufacturing

- NADCAP Certification
- Boeing D1-4426 "CQS" Quality Standard
- USAF MTAPP
- CCR, Defense Logistics Agency
- EDC PTAC
- Sikorsky (Lab 9 Composites Testing Facility)
- Cessna Aircraft

Intec maintains a high level of quality by proactive uses of our ISO 9001compliant quality systems Additionally, Intec conforms to the requirements of MIL-I-45208A as the sections apply to our facility. Intec maintains the highest level of calibration with reference to MIL-C-45662 and calibration is performed on a periodic basis.

Calibrations at Intec are performed to standards traceable to the National Institute of Standards and Technology (NIST).

737 BBJ Winglet Test Setup

The certification tests for APB's 737-BBJ blended winglet.

Multiple actuators applied load through 3 wiffle trees with load pads to simulate aerodynamic loads.

Reaction fixtures were designed for more than 500,000in-lbs bending moment with less than 0.02" overall deflection.

The specific aim of this test was to show compliance with FAR 25.305 (a)(b) and 25.307.

Testing

737 BBJ Winglet Test to Failure

V-22 Tiger Door Test Setup

Intec has been pursuing the use of high-temperature graphite titanium sandwich structure as a lower cost, lower weight alternative to super plastic formed titanium structures in elevated temperature applications.

General Aviation Spar Test Setup

Close up of failure

600 KIP Hydraulic Test Frame

Hydraulic Test Frames

Specialized Fixturing

Specialized Fixturing

Specialized Fixturing

Transverse Tension Fixture

Transverse tension fixture

Specialized Fixtures K2 Snowboard Binding

Large Shear Panel Test Fixture

Testing

Large Shear Panel Test Fixture

Large Notch Panel Test Fixture

Test Fixtures

MTS TestStar IIs

Composites Testing

Mechanical:

• Static, fatigue, spectrum, creep, impact, fracture toughness, multi-axis, and full-scale loads to 2.5M lbs., coupon level and component level testing with more than 600 channels of data

Coupon Testing:

- Metallic and fibrous composite materials
- Automated static testing (tensile, compression, shear, etc.)
- Fatigue, crack growth and damage tolerance testing
- Manufacturing of all test coupons and panels

Composites Testing

Environments:

• Thermal cycling and environmental exposure (-420°F to 2500°F)

Thermal analysis:

• DSC, DMA, TGA, FTIR, TGA, CTE

Physical Properties

• Void, density, volume fraction, flammability, out gassing, ultrasonic pulse echo and TTU

Photography

• Stills, high resolution digital, microscopy, high speed video, shadow moiré, in-plane moiré, photoelasticity

Composites Testing - Sea Launch

KGR-1 Test Setup

Capabilities -Senior Engineering Staff-

- More than 30 years experience
- Materials, analysis, design, management
- Technology development
- Preliminary design
- Product development
- Production design
- CAD
- FEM

Capabilities -Senior Engineering Staff-

Design & Engineering

V-22 TiGr Engine Nacelle Door

Prediction of Cracking in Composites

Design & Engineering

FEM Model and Photo

Three Stringer Compression Specimen

Design & Engineering

Capabilities Design & Fabrication

- Tool design & fabrication (including composite tooling)
- 6' dia. x 15' research autoclave, 450°F 150 psi
- Sandwich structures, graphite, glass, Kevlar, thermoplastic & thermoset parts
- High modulus graphite, net OD & ID tubes
- Prototype & component design
- Process development & optimization
- Product development
- 5 axis, 24,000 rpm, (12' x 5' x 36" envelope) composite machining

Engineered Container Systems

Our engineering group is well experienced in designing containers that specifically meet weight, shock, durability, and environmental isolation requirements.

Engineered Container Systems

Engineered Container Systems

Engineered Container Systems

Container Systems Advanced Reconfigurable Container "ARC"

Container Systems Advanced Reconfigurable Container "ARC"

JASSM Cruise Missile Container

Bell V-22 TiGr Nacelle Door

Grid Stiffened VARTM Panel

Fabrication of Aircraft Parts

Fabrication Types:

Skin stringer

Sandwich

Hybrids

Thermoplastic Extrusion

Thermoset Extrusion

Thermoplastic Pultrusion

Thermoset Pultrusion

RTM skin stringer

Prototype and Production Parts

Fabrication:

Fixed & rotary wing aircraft and satellite hardware & parts

Master model making

Reusable and disposable mandrels

Tubes, clips, ducts, and structural shapes

Repair: parts, components, and structures

Prototype and Production Parts

Fairchild Dornier Envoy 7

Soloy Corp Engine Nacelle

Raytheon Hawker 800

Boeing 747 Winglet Fabrication

Prototype and Production Parts

Prototype and Production Parts

EAGLE 600

Conceptual Design Program

77.2

Internal Layout – Options

• Lycoming HIO-360-D1A

Continental IO-360D

Positive Head Moment

- Choices considered were a fully articulated 3-bladed hub or 2-bladed teetering hub with offset elastomeric flapping hinges and hub spring
- To reduce hub complexity, use 2 blades resulting hub design is similar to that successfully used on Bell 222

Prototype and Production Parts

Prototype and Production Parts

Large Components with Integrated Doublers

6' x 15' Autoclave 150 PSI - 500°F

60" x 140" INVAR Tool for Low CTE Panel Fabrication

Aluminum Sandwich Satellite Corner Wall

UHM 8552 / Korex 127" X 60" Sandwich Panel for Satellite Ribs

Large Flat Panels using INVAR Tooling

Fabrication of Specialized Aerospace Parts

Thermal, EM and Structural Solutions Example:

- •Satellites (Extreme Environments)
- •Thermal Management, & EM Shielding
- •Structural Stability (CTE, Specific Stiffness)
- •Military Electronics (Extreme Environments, Low T & EM Tolerance)
- •Thermal Management
- •Extreme EM shielding, Targeted EM absorption
- •Structural Stability (CTE, Specific Stiffness)

Low Cost Metal Matrix Composites

- Lower CTE
- High Strength, Stiffness, Fracture
- Functional Gradient Properties in Castings
- High % Percentage Reinforcement

Fabrication

Laminated TiGr Metal Composites

Don Grande 1929 ~ 2004

- Design Tools/Data
- **Dry Surface Preps on Metal Surfaces**
- Chrome Cathodic arc ≈ 700Å
- Prototype Parts
 - C-17 Tear Straps
 - HSCT Fuselage Structure
 - Bell V-22 Nacelle Door
 - 777-200 Fuselage Stringers

Fabrication

Metal & Composite Machining Flight Hardware Joint Strike Fighter

Aerospace Machining example:

Intec has produced several major components for the Boeing Joint Strike Fighter prototype forebody. These parts include the air inlet duct pivots (Bullnose), nosewheel landing gear retract arms, and several large, high tolerance aluminum grid avionics trays.

Machining

Metal & Composite Machining Flight Hardware -737-757-767- Landing Gear Doors

Machining

Metal & Composite Machining Precision Core Machining

Machining

Integrated Technologies, Inc.

UW-FAA Center of Excellence on Advanced Materials.

