Composites in Sporting Goods

Dodd Grande Bruce Jahnke

K2 Sports Seattle Washington

AMTAS Spring Meeting March 20, 2008

Areas of Composite Usage at K2 Sports

Skis
Snowboards
Snowboard Bindings
Inline Skates

Nordic Skis
Nordic Ski Poles
Nordic Ski Boots
Snowshoes

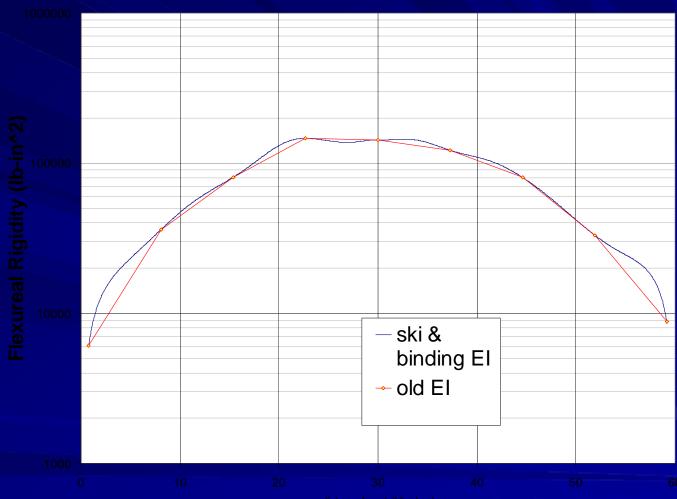
Composite Usage at K2 Sports

Types of Products
 Types of Composites for Each
 Design Drivers
 Material Selection Considerations
 Examples

Skis

Skis

Type of Composite


Wet Lay up Glass and Carbon Epoxy

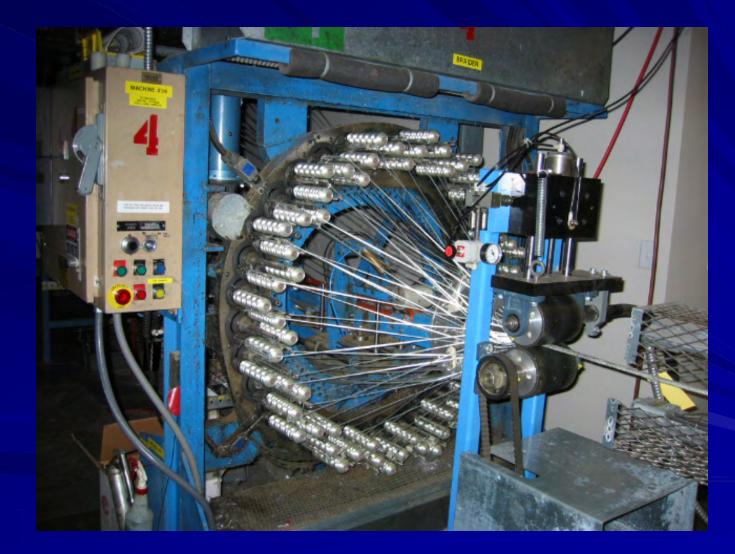
- Di functional epoxy with amine curing agent
- Woven, non-woven, stitched uni and braided glass and carbon
- Process: Wet Lay up Compression Molding

Design Drivers

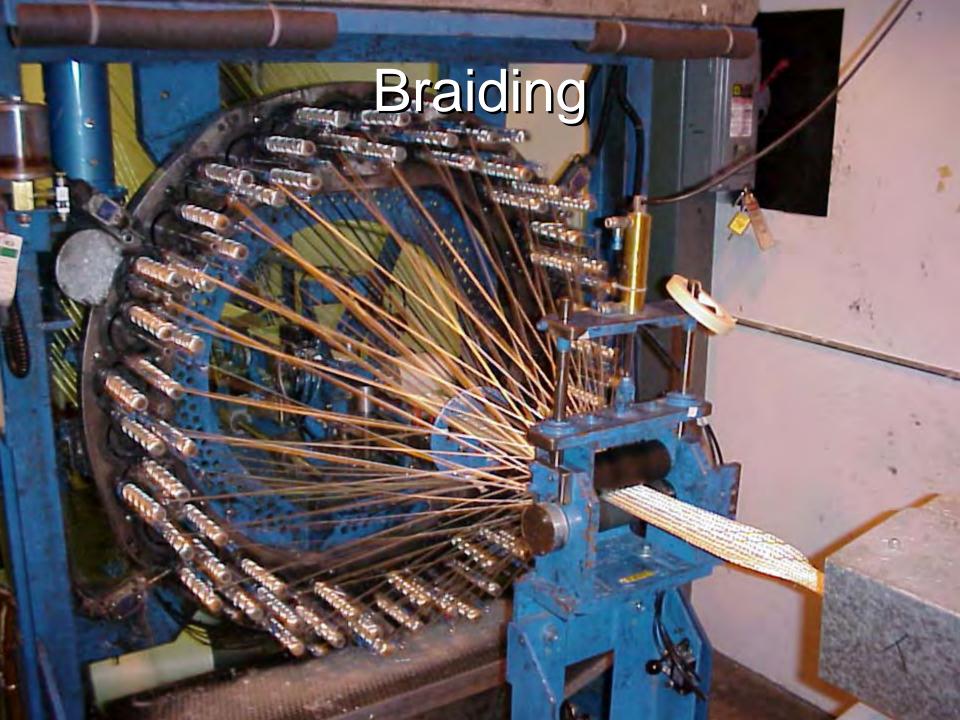
- Stiffness and geometry driven
- Manufacturing driven
- Cost driven
- Failures typically driven by:
 - Bond Failures
 - Imperfections in structure
- Material Selection Drivers
 - Cost
 - Bonding Must join many dissimilar materials

SKi & Binding - stiffness distribution

distance from tail (inches



DPM PROTOTYPE TOOLING



Braiding


間

Molding

COMPANYION OF THE OWNER OWNER

CAUTIO

THE PERSON AND A CLEAR

Snowboards

- Snowboards
- Type of Composite
 - Wet Lay up Glass and Carbon Epoxy
 - Di functional epoxy with amine curing agent
 - Woven, non-woven, stitched uni and braided glass and carbon
 - Process: Wet La yup compression molding

Design Drivers

- Stiffness and geometry driven
- Manufacturing driven
- Cost driven
- Some weight considerations
- Failures typically driven by:
 - Core Failures
 - Imperfections in structure
 - Bond Failures

Material Selection Drivers

- Cost
- Weight
- Bonding Must join many dissimilar materials

Snowboad Bindings

- Snowboard Bindings
- Type of Composite
 - Injection molded glass nylon
- Design Drivers
 - Shape complex
 - Strength
 - Weight
 - Cost

Material Selection Drivers

- Strength
- Low temp. high rate loadings
- Complex shapes
- Cost

Inline Skates

- Price Point Skates
- Components
 - Frame
 - Base
- Type of Composite
 - Injection molded Glass/PP and Glass/Nylon
- Design Drivers
 - Stiffness
 - Strength
 - Geometry
 - Cost

Inline Skates

- Performance Skates
- Components
 - Base
 - Cuff
- Type of Composite
 - Wet Layup or Prepreg Glass and Carbon
 - Process: Vacuum bag hand layup over male tool
- Design Drivers
 - Weight
 - Stiffness
 - Geometry
 - Strength

Nordic Skis

- Nordic Skis
- Type of Composite
 - Wet Lay up Glass and Carbon Epoxy
 - Di functional epoxy with amine curing agent
 - Woven, non-woven, stitched uni and braided glass and carbon
- Design Drivers
 - Weight
 - Stiffness and geometry driven
 - Manufacturing driven
 - Cost driven
- Material Selection Drivers
 - Weight
 - Cost
 - Bonding Must join many dissimilar materials

Nordic Ski Poles

- Type of Composite
 - Prepreg Carbon and Glass Epoxy
 - Wet processing carbon and glass epoxy

Design Drivers

- Stiffness
- Weight
- Strength must meet a minimum criteria
- Cost

Nordic Ski Poles

- Type of Composite
 - Prepreg Carbon and Glass Epoxy
 - Wet processing carbon and glass epoxy

Design Drivers

- Stiffness
- Weight
- Strength must meet a minimum criteria
- Cost
- Material Selection Drivers
 - Processing

- Nordic Ski Poles
- Prepreg Construction
- Design Drivers
 - Stiffness
 - Weight
 - Strength must meet a minimum criterium
 - Cost
- Process is table rolling of prepreg similar to golf shafts.

Stiffness/Weight Considerations

- Most material is longitudinal
- Minimal material in hoop direction (10%)
- Weight drives a very thin structure
- Cost and Export regs make higher modulus fibers difficult.
- Strength
 - Tested after the other criteria are met to ensure a minimum level

- Nordic Ski Poles
- Wet Layup Construction
- Design Drivers
 - Cost
 - Stiffness
 - Weight
 - Strength must meet a minimum criteria
- Process is a wet bath impregnation process.
- This is a processing driven item

Construction Considerations

- Most material is longitudinal
- Minimal material in hoop direction (10%)
- Thicker structure than prepreg shafts
- Processing nuances are tricky
- Strength
 - Tested after the other criteria are met to ensure a minimum level

Nordic Ski Boots

- Nordic Ski Boots External parts
- Type of Composite
 - Wet Lay up Glass and Carbon Epoxy
- Design Drivers
 - Geometry
 - Stiffness
 - Weight
 - Joints
- Material Selection Drivers
 - Stiffness to weight
 - Processing

Nordic Ski Boots

Nordic Ski Boots

- Nordic Ski Boots Internal
- Type of Composite
 - Glass or carbon epoxy sheet die cut
- Design Drivers
 - Stiffness
 - Weight
 - Cost
- Material Selection Drivers
 - Stiffness
 - Cost

Snowshoes

Snowshoes

- Type of Composite
 - Thermoplastic coated fabric

Design Drivers

- Tear Strength
- Hole Pullout Strength
- Abrasion
- Low Temp Properties
- Decoration
- Cost

Conclusion

Types of Composites

- Pre preg Glass and Carbon Epoxy
- Wet Layup Glass and Carbon Epoxy
- Injection molded thermoplastic
- Coated Fabrics

Overall Drivers

- Cost
- Manufacturing
- Stiffness
- Weight
- Strength
- Tooling Cost and Flexibility

Conclusion

Types of Composites

- Prepreg Glass and Carbon Epoxy
- Wet Layup Glass and Carbon Epoxy
- Injection molded thermoplastic
- Coated Fabrics

Products

- Skis
- Snowboards
- Snowboard Bindings
- Inline Skates
- Nordic Skis
- Nordic Ski Poles
- Nordic Ski Boots
- Snowshoes

Future Directions

The natural and eco element is gaining momentum.
 Recycling
 Natural Composites
 Cost/Processing issues may gain more importance

Questions, comments and discussion