Failure of Notched Laminates Under Out-of-plane Bending

FAA Technical Monitors: Curt Davies & Lynn Pham

Industrial Sponsor: Boeing Commercial Airplane Company

Technical Advisers:

Gerry Mabson, Boeing Tom Walker, NSE Composites Larry Ilcewicz, FAA Objective: For out-of-plane bending of notched laminates, determine the modes of failure and evaluate the capability of current models to predict failure

Experiments: Four-point bending

Modeling: Progressive Damage Development

Experiments: Four-point Bending Tests

Notch Lengths: 2a = 1 inch & 2a = 4 inches

BMS 8-276 Carbon Fiber Tape

Laminate Types

- 10% 0° Plies
- 30% 0° Plies
- 50% 0° Plies

Laminate Thicknesses

- 20 plies Thick
- 40 plies Thick

Notch Lengths

- 1 inch
- 4 inches

ABAQUS Progressive Damage Model

- Damage Initiation Hashin Theory
 - Fiber Tension
 - Fiber Compression
 - Matrix Tension
 - Matrix Compression

Damage Evolution

Strain Softening

Simulation of the 4-point Bend Test

Far Field Strains

Notch Tip Strains

FAILURE LOADS

FAILURE LOADS

FAILURE LOADS

Damage Model Performance

- Thin Laminates average error=7%
- Thick Laminate average error=16%

FUTURE WORK

- Delamination Modeling
- Mesh Dependence Effects
- Damage Parameter Sensitivity Study
- Evaluation of Semi-Empirical Models