Failure of Notched Laminates Under Out-of-plane Bending

Industrial Sponsor: Boeing Commercial Airplane Company

Technical Advisers:

Gerry Mabson, Boeing Tom Walker, NSE Composites

Out-of-plane Loading

Objective: For out-of-plane bending of notched laminates, determine the modes of failure and evaluate the capability of current models to predict failure

Experiments: Four-point bending

Modeling Stress Concentration Factors

Progressive Damage Development

Experiments: Four-point Bending Tests

Notch Lengths: 2a = 1 inch & 2a = 4 inches

Large Deflection and Anticlastic Curvature Effects

Stress Concentrations in Notched Laminates Under Bending

Plate Theory Without transverse shear effects (KPT)
With transverse shear effects (RPT)

Stress Concentration for an Elliptic Hole – Isotropic Material

Moment Concentration Factor for an Elliptical Hole - Laminate

Progressive Damage Modeling

Damage Mechanics – Strain Softening

Chang Model

$$\begin{cases}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{3} \\
\sigma_{4} \\
\sigma_{5} \\
\sigma_{6}
\end{cases} =
\begin{bmatrix}
C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\
C_{21} & C_{22} & C_{23} & 0 & 0 & 0 \\
C_{31} & C_{32} & C_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & C_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & C_{66}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{3} \\
2\varepsilon_{4} \\
2\varepsilon_{5} \\
2\varepsilon_{6}
\end{bmatrix}$$