Multifunctional Ferroelectric Nanostructures

Lei Zhang and Jiangyu Li Department of Mechanical Engineering University of Washington Jjli@u.washington.edu

> AMTAS Spring 2007 Meeting Seattle, WA April 12, 2007

Ferroelectrics

Ferroelectric crystals are spontaneously polarized below the Curie temperature

- The crystal may be polarized in any of the crystallographically equivalent directions
- A crystal may be polarized in different directions in different "domains"

Applications

Active rotors and control surfaces

Vibration control

Microsensor

Energy harvesting

PVDF Ferroelectric Polymer

All-trans conformation

β phase lattice

Multifunctional Nanostructure

- Energy harvesting
- Energy storage
- Sensing
- Actuation
- Structure morphing
- Self-healing/cooling

Nanoimprint Lithography

Film on substrate

Pattern transfer

Transferred pattern

Silicon stamp

Phase Diagram of P(VDF-TrFE)

Patterned P(VDF-TrFE) Wires

P(VDF-TrFE) (65/35), T=135°C, Time=1.5hrs. Pressure: 1800PSI.

Silicon Mold

Patterned P(VDF-TrFE) Film

Patterned P(VDF-TrFE) Mesas

Silicon Mold

Nanoscale P(VDF-TrFE) Pattern

FTIR Spectrum

X-ray Diffraction

Ferroelectric Hysteresis

Uniform Film

Patterned Film

Ferroelectric Hysteresis

Uniform Film

Patterned Film

Ferroelectric Hysteresis

Uniform Film

Patterned Film

Electrostatic Force Microscopy

Uniform Film

Electrostatic Force Microscopy

Patterned Film

Solvent Assisted Microcontact Molding

P(VDF-TrFE) Pattern by SL

P(VDF-TrFE) Pattern by SL

P(VDF-TrFE) Pattern by SL

Summary

- Nanoimprint lithography and soft lithography techniques have been developed to pattern P(VDF-TrFE) nanostructures
- Patterned β phase P(VDF-TrFE) films have been confirmed by FTIR Spectrum and XRD
- Ferroelectricity of patterned P(VDF-TrFE) films have been confirmed by hysteresis measurement and EFM
- The patterned P(VDF-TrFE) nanostructures are promising for multifunctional material systems

