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» Motivation and Key Issues: Composite materials are being used in

aircraft primary structures such as 787 wings and fuselage. In these
applications, stringent requirements on weight, damage tolerance,
reliability and cost must be satisfied. Presently there is no industry-
wide standard to establish appropriate inspection intervals for a
damage-tolerant structure based on the consideration of structural
reliability, inspection methods, and quality of repair. An urgent need
exists to develop a standardized methodology for establishing an
optimal inspection schedule that provides minimum maintenance
cost and maximum structural reliability.

Objective: Develop a probabilistic method to estimate structural
component reliabilities suitable for aircraft design, inspection, and
regulatory compliance.
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» Principal Investigator:
Dr. Kuen Y. Lin, Aeronautics and Astronautics

Research Scientist: Dr. Andrey Styuart
Research Assistants: Cary Huang, Crystal Simon

» FAA Technical Monitor: Peter Shyprykevich
» Other FAA Personnel: Dr. Larry licewicz, Curtis Davies

» Industry Participants: Dr. Alan Miller, Dr. Cliff Chen,
Dr. Hamid Razi (Boeing)
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Approach

» The present study is based on a probabilistic failure
analysis with the consideration of parameters such as
Inspection intervals, statistical data on damages, loads,
temperatures, damage detection capability, residual
strength of the new, damaged and repaired structures.

» The inspection intervals are formulated based on the
probability of failure of a structure containing damage
and the quality of a repair.

» The approach combines the “Level of Safety” method
proposed by Lin, et al. and “Probabilistic Design of
Composite Structures” method by Styuart, at al.

» No damage growth is assumed in the present model.
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> Develop a Probabilistic Method to Determine Inspection
Intervals for Composite Aircraft Structures

» Develop Computing Tools and Algorithms for the
Probabllistic Analysis

» Establish In-service Damage Database from FAA SDR
and Other Sources

» Demonstrate the Developed Method on an EXxisting
Structural Component
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Typical In-service Damage— Hail Damage 4MTAS
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Visual Inspection POD
for Shiny Surface at 20 ft Distance
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» Two methods, based on Importance Sampling and Monte-Carlo

Simulation, have been developed for determining the inspection
Intervals.

Work Accomplished

» Computer software (Version 1.2) for calculating the inspection
Intervals has been completed.

» Database for Reliability-Based Damage Tolerance Analysis has
been established.

» Three sample problems with parametric studies have been
demonstrated on existing structural components.

»Results from the present study have been compared with those
obtained by other methods and software (NESSUS).

» Effect of environmental aging and chemical corrosion added
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Probabilistic Input Parameters: Residual Strength
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First, we simulate random time histories of residual strength as a sequence of intervals
between damage initiation and detection/repair. The probability of failure (POF) can then be
evaluated as the sum of POF for all intervals.
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Res. Strength degradation vs. Damage Size
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The Integration Technique:

* Monte-Carlo Integration + Importance Sampling
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The Integration and
Full Monte-Carlo Models

Integration -> Features Covered:

Random External Load
Random Damage Sizes & Number
Random Failure Load

Random Damage Detection Time vs.
Damage Size

Random Properties Degradation due to
Temperature

Multiple Load Cases

Multiple Damage Types

Multiple Inspection Types

Various Repair Types & Repair Logic
Multiple Damage Interaction
Effects of environmental aging
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Integration -> Advantages:
High Speed
High Accuracy

The Joint Advanced Materials and Structures Center of Excellence

* 600

*

® ¢ 6 6 0o

dMIAS

Trar ;M frs.' 1

Full M-C -> Features Covered:

Random External Load
Random Damage Sizes & Number
Random Failure Load

Random Damage Detection Time vs.
Damage Size

Random Properties Degradation due to
Temperature

Multiple Load Cases

Multiple Damage Types

Multiple Inspection Types

Various Repair Types & Repair Logic
Multiple Damage Interaction
Effects of environmental aging
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Full M-C -> Advantages:

¢ Consistent Temperature Presentation
¢ Detailed Failure Data Output
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Results of Parametric Study
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Sample Problem 1: AVITAS
Com par iIson With NESSUS rm,,wfﬁ:ﬁ?:ﬂ#?::?z’;", '

NESSUS Model feature: Exactly one damage per life
Random variables:

1. Load Lmax, LmaxD, LmaxR for undamaged, damaged and repaired item; Gumbel
distribution

2. Initial Strength Rini; Normal distribution
3. Damage size D; Exponential distribution;
4. Random inspection Interval Cv=10%
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Sample Problem 1: AVITAS

Ad d Materials i

Sensitivity Study from NESSUS CECAM

Sensitivity Levels

B (ap/an)oip)

17 Cliapiao)aip)
o) I Fm—| . 1 [o—

D LMAX LMAXD LMAXR RINI TINSP

Lewvel=1

The Joint Advanced Materials and Structures Center of Excellence 21



Sample Problem 1.
Probabilistic Sensitivity Factors from  4AMIAS
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What we have:

» The preliminary method for determining POF and the inspection intervals for no
growth concepit.

»Basic computer software for calculating POF and and the inspection intervals.

»Some restricted database for Reliability-Based Damage Tolerance Analyses.

What we will have:

» The established method for determining POF and the inspection intervals including
material degradation.

»User friendly computer software for commercial use in probabilistic design.

» Acceptable database for Reliability-Based Damage Tolerance Analyses.

23
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> Benefit to Aviation

— The present method allows engineers to design damage tolerant
composite structures for a predetermined level of reliability, as
required by FAR 25.

— The present study makes it possible to determine the relationship
among the reliability level, inspection interval, inspection method,
and repair quality to minimize the maintenance cost and risk of
structural failure.

> Future needs

— A standardized methodology for establishing an optimal
Inspection schedule for aircraft manufacturers and operators.

— Enhanced damage data reporting requirements regulated by
the FAA.
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‘}Mns Phase 2: Analysis Refinement and A_MJAS

Methodology Implementation

(September 1, 2005 — August 31, 2007)

The primary objective of Phase 2 is to apply the
developed methodology to the maintenance of
current fleet and design of future aircratft.

Major tasks to be accomplished in Phase 2:

» Analysis Method Enhancement

» Analysis Method Implementation

25
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Task 2.1: AVTAS
A n a-l yS | S M et h O d En h ancement rmmifr%?;iﬂ#?:;sz,;",

The analysis method developed in Phase | will be enhanced to include:

1. Effects of environmental aging and chemical corrosion. The
mathematical model of aging will be represented by an Arrenius type
equation to include the empirical UV and fuel degradation. The aging
effects will be incorporated into computer software and algorithm that
help designers to compare various aging environments and impact of
aging/corrosion on the structural reliability.
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Task 2.1: GIITAS
Analysis Method Enhancement BT

2. Development of optimum inspection schedule to minimize maintenance
cost and risk. Typical algorithms for minimum LCC design will be
studied and incorporated into the software. The developed computer
program will take into account the factors such as inspection cost and
associated repair and downtime costs, cost of consequence of failure
and possibly acquisition and operating costs.

F 3

Higher cost of
consequence of
failure

Higher inspection
and repair cost

Life Cycle Cost

v

Inspection interval
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Task 2.1: AMTAS
Analysis Method Enhancement parei}

3. Development of database and tools to automate the entire evaluation process.
Such tools may be used as production tools for maintenance planning.

Database on impact damage condition: The goal is to establish a set of standard design
damage types along with their frequencies. Each of them has distinct characteristics
such as geometry, energy (or any invariant metric), and density. The specific work
items for this task may include:

(1) Data mining and grouping,

(2) Reverse engineering to estimate impact energy with known or best assumed
geometry and density,

(3) Establishment of frequencies or exceedances.

These tasks need to be performed for each primary structural locations. Engineering
judgment and assumptions will play a big role here; nevertheless, it should be
acceptable as long as we take every measure conservatively. To do reverse
engineering, we may try to simplify the process by making some parametric analyses
for both metal and composite structures based on a conservative representative
configuration for each structural area (e.g., fuselage skin-stringer panels). As such, for
a given damage record, we may do interpolation to get an energy estimate based on
the descriptions of the reported damage.
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Task 2.1: AMTAS
Analysis Method Enhancement

3. Development of database and tools to automate the entire evaluation process.
Such tools may be used as production tools for maintenance planning.

Tools: In order to conveniently apply the developed reliability
method to industry, we need to develop "self-explanatory”
software with built-in initial data sets, "transparent”
simplified solutions, expert help system and clear sample
results. Ideally, the tool should be applicable not only to
maintenance but also to design as well.

With full characterization of damage, loads, environments, materials and costs
available, the developed code can be used as a single design tool for a unified
design (i.e., combining static strength, damage tolerance, inspections and fail-
safety). The developed reliability code can be integrated into standard structural
analysis and design optimization programs.
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Task 2.2:
Methodology Implementation and A_M,'MS

Regulatory Compliance
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This task will focus on the application of the developed methodology.
Key to the implementation of the reliability methods is the
development of an accidental damage rating system (ADR) that is
compatible with the methodology and complies with MSG-3
guidelines.

The developed reliability method may help the industry in two ways:
» Finding rational inspection intervals.

» Establishing more reasonable design requirements compared to the present
requirements derived from AC-107 and so on. In fact, AC-107 regulates the
residual strength curve depending on the probability of damage detection only.
It seems that Boeing's approach is also based on the assumption that
composite design is primarily driven by damage detectability. There is no
connection with real impact conditions. Using results of this research, we can
demonstrate to the FAA that in some cases the AC-107 requirements are too
conservative, but in other cases they may be inadequate.
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Phase 2 Milestones AMTAS
(September 1, 2005 — August 31, 2007)

Task 2.1

Subtask 1
Subtask 2

Subtask 3

Task 2.2
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