

#### Development of Reliability-Based Damage Tolerant Structural Design Methodology

Presented

by

Dr. Kuen Y. Lin and Dr. Andrey Styuart Department of Aeronautics and Astronautics University of Washington, Box 352400 Seattle, WA 98195-2400

October 19, 2006

The Joint Advanced Materials and Structures Center of Excellence



# **Contributors**

- > Principal Investigator:
  - Dr. Kuen Y. Lin, Aeronautics and Astronautics, UW
- Research Scientist: Dr. Andrey Styuart, UW
- Research Assistants: Chi Ho "Eric" Cheung, UW
- FAA Technical Monitor: Curtis Davies
- > Other FAA Personnel: Dr. Larry Ilcewicz
- Industry Participants: Dr. Cliff Chen, Dr. Hamid Razi, Mr. Gerald Mabson, Dr. Alan Miller (All from Boeing)



#### Development of Reliability-Based Damage Tolerant Structural Design Methodology

- Motivation and Key Issues: Composite materials are being used in aircraft primary structures such as 787 wings and fuselage. In these applications, stringent requirements on weight, damage tolerance, reliability and cost must be satisfied. Although currently there are MSG-3 guidelines for general aircraft maintenance, an urgent need exists to develop a standardized methodology specifically for composite structures to establish an optimal inspection schedule that provides minimum maintenance cost and maximum structural reliability.
- Objective: Develop a probabilistic method for estimating structural component reliabilities suitable for aircraft design, inspection, and regulatory compliance.



### Critical Damage Types in Metals vs. Composites

|                         | Fatigue damage, metals                                                                 | Impact damage, composites                                                     |
|-------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Type of<br>uncertainty  | Quite certain: fatigue crack                                                           | 3-5 damage types should be<br>considered for any particular<br>structure type |
| Location of uncertainty | Quite certain: high stress concentration locations                                     | All surface: relative damage frequency is known                               |
| Size of<br>uncertainty  | For good designs, grows slowly from zero. Can be stopped.                              | Created instantly, then usually doesn't grow.                                 |
| Predictive<br>methods   | Well developed. Combined<br>with fatigue tests give quite<br>good idea of fatigue life | Poor prediction due to lack of appropriate statistical data                   |
| Inspection<br>interval  | Quite certain: should be<br>long enough to detect<br>growing crack                     | Uncertain: no deterministic criteria to follow                                |

#### **S** Example of In-service Damage: Hail Damage







### External Damage Map from the FAA Service Difficulty Report





# **SDR Summary**

- Aluminum-Honeycomb sandwich delamination is a reoccurring problem – slats, flaps and stabilizers on 767s shows large number of delamination occurrences
- Nearly all dents, holes and gouges are on the lower fuselage and are caused by ground activities, e.g. trucks and operation staff
- Majority of the damages on the upper fuselage are caused by lightning strikes
- Large number of cracks and fatigue damages occurred near the horizontal stabilizer cutout region
- Although the wings have very large areas, relatively few major damages are recorded



# **Technical Approach**

- The present study is based on a probabilistic failure analysis with the consideration of parameters such as inspection intervals, statistical data on damages, loads, temperatures, damage detection capability, residual strength of the new, damaged and repaired structures.
- The inspection intervals are formulated based on the probability of failure of a structure containing damage and the quality of a repair.
- The approach combines the "Level of Safety" method proposed by Lin, et al. and "Probabilistic Design of Composite Structures" method by Styuart, at al.
- > No damage growth is assumed in the present model.



# **Probabilistic Approach**



Flight Temperature



# **Probabilistic Model**





## **Probability of Failure Formulation**

#### **Deterministic Input Parameters:**

- Type of damage T<sub>D</sub>
- Failure mode/ load case FM
- Inspection intervals T<sub>1</sub>, T<sub>2</sub>, ...

#### **Probabilistic Input Parameters:**

- Failure load (initial strength) R<sup>J</sup><sub>o</sub>
- Number of damages per life N<sup>J</sup>
- Damage size **D**<sup>J</sup>
- Time of damage initiation  $t_i^J$
- Time of damage detection  $td_i^J$
- Residual strength R<sup>J</sup><sub>i</sub>
- External load L<sub>i</sub><sup>J</sup>
- Structural temperature  $T_{i}^{\circ J}$
- Effects of environmental aging and chemical corrosion

$$P_{f} = \int_{\Omega} f(N, \overset{\Gamma}{D}, \overset{\Gamma}{R}, t, td, \overset{\Gamma}{L}, \overset{\Gamma}{T}^{\circ} | T_{D}, FM, T_{1}, T_{2}, T_{3}...) d\overset{\Gamma}{v}$$
$$d\overset{\Gamma}{v} = dN d\overset{\Gamma}{D} d\overset{\Gamma}{R} dt d(td) d\overset{\Gamma}{L} dT^{\circ}; \quad \Omega = failure \ domain$$

#### Piecewise random history method:

Relations for one type of damage and failure mode/ load case

$$\begin{split} P^{j} &= 1 - \prod_{i=1}^{N_{j}} [1 - P_{i}^{j}(R_{i}^{j}, (td_{i}^{j} - t_{i}^{j})]; \quad P_{f} = \frac{1}{N} \sum_{j=1}^{N} P_{j}; \quad N = f(\Delta); \\ P_{i}^{j} &= 1 - \{F_{L}[R_{i}^{j}(D_{i}^{j}) | \mu_{L}, \sigma_{L}]\}^{\frac{(td_{i}^{j} - t_{i}^{j})}{Life}}; \quad F_{L} = CPF \text{ of max load per life} \\ td_{i}^{j} &= f[P_{Detect}(D_{i}^{j}), t_{i}^{j}] \end{split}$$



# **Work Accomplished**

Developed a Probabilistic Method for Determining the Probability of Failure and Inspection Interval for Aircraft Structures (from sub-structure level to airframe level)

Implemented the Developed Probabilistic Method in the Form of Computer Software for the Probabilistic Analysis

Demonstrated the Developed Method on Existing Structural Components (Lear Fan 2100 Composite Wing and TU-204 Composite Aileron)

Demonstrated Cost Optimization Capability using the Developed Method

Established Major Damage History on Aluminum Airframes from FAA SDR as a Baseline for Data Extrapolation



# **Software Architecture**



The immediate output is the Probability of Failure of a fleet with given engineering and operational statistics. The method can then be adapted to calculated the inspection interval, repair quality, etc. needed to ensure a sufficiently low probability of failure or safety benchmark.



# **Finding Inspection Intervals**





# **Program Capabilities**

- Static failure: load exceeds the strength of damaged structure
- Excessive deformations
- Flutter: airspeed exceeds the flutter speed of damaged structure\*
- High amplitude limit cycle oscillations: the acceptable level of vibrations is exceeded\*

\*See the FAA Grant "Combined Local ->Global Variability and Uncertainty in the Aeroservoelasticity of Composite Aircraft"



#### Example of POF Calculation for One Structure



$$P_{f} = 1 - \prod_{i=1}^{N=3} [1 - P_{f}(R_{i}, t_{i})]$$
$$P_{f}(R, t) = 1 - \exp\{-H_{t}(R)t\}$$

| Interval #                      | <b>Probability of Failure</b> |
|---------------------------------|-------------------------------|
| 1 (new structure); R=1.5        | 6.12E-06                      |
| 2 (damaged structure); R=1.1    | 4.26E-02                      |
| 3 (repaired structure) ); R=1.5 | 6.12E-06                      |
| Total POF =                     | 4.26E-02                      |



# **Residual Strength History Simulation**





### Residual Strength Analysis of a Simple Wing Box





#### **Input Data Management**

| Selected PDF index                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |              | Exceedance Curv<br>Weibull                                             | e 🔺             | Load                                   | Exce                                                               | edan                                                                                 | ce Dat                                                                              | а           | Selected PDF                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------|------------------------------------------------------------------------|-----------------|----------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |              | Normal<br>Cumbol I                                                     |                 | Select Prob                            | ahility Distri                                                     | hution functi                                                                        | on that suits t                                                                     | o the       | Mean                                                                                                                                                                                                                                        |
| Mean                                                                                                                                                                                                                                                                                                                                                                                                                        | Standa                          | ard Dev.     | Lognormal                                                              |                 | Maximum I                              | ability bistin                                                     | bation lancti                                                                        | on that sales i                                                                     | othe        | moun                                                                                                                                                                                                                                        |
| 2.5835                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | 0.1446       | Uniform                                                                |                 |                                        |                                                                    |                                                                                      |                                                                                     |             |                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |              |                                                                        | <u> </u>        |                                        |                                                                    |                                                                                      |                                                                                     |             | for Lognorm                                                                                                                                                                                                                                 |
| -                                                                                                                                                                                                                                                                                                                                                                                                                           | _                               |              | for Lognormal                                                          | specify the av  | erage value a                          | and standar                                                        | d deviation                                                                          | of the logarith                                                                     | m           |                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |              | Mean and Sta                                                           | ndevil Devietie |                                        |                                                                    | at la av                                                                             |                                                                                     |             |                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                             | ~                               |              | then "Evened                                                           | indard Deviatio | n are specilie                         | ia ior PDFS (                                                      | Juner                                                                                |                                                                                     |             | N Rows in Ex                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |              |                                                                        |                 |                                        |                                                                    |                                                                                      |                                                                                     |             | Temperature                                                                                                                                                                                                                                 |
| N Rows in Data                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |              |                                                                        | This            | column repre                           | sents a num                                                        | ber of loads                                                                         | exceeding or                                                                        | 18          | remperature                                                                                                                                                                                                                                 |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |              |                                                                        | given           | in the left co                         | lumn per life                                                      |                                                                                      |                                                                                     |             |                                                                                                                                                                                                                                             |
| oad                                                                                                                                                                                                                                                                                                                                                                                                                         | Exceedan                        | ces per life |                                                                        | Ŭ               |                                        |                                                                    |                                                                                      |                                                                                     |             |                                                                                                                                                                                                                                             |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | 4.268E+09    |                                                                        | This            |                                        | a subs u subsit                                                    | and the set of set                                                                   | to us all local for                                                                 |             |                                                                                                                                                                                                                                             |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                        | _                               | _5400E+05    |                                                                        | Inis            | column repre                           | sents nodal                                                        | values of ex                                                                         | ternal load in                                                                      |             |                                                                                                                                                                                                                                             |
| 1.50                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | 7.114E+03    |                                                                        | asce            | naing oraer.                           |                                                                    |                                                                                      |                                                                                     |             |                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | 8.434E+01    |                                                                        | Limit           | load here is                           | equal to 2.5                                                       |                                                                                      |                                                                                     |             |                                                                                                                                                                                                                                             |
| 2.50                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | 1.000E+00    |                                                                        |                 |                                        |                                                                    |                                                                                      |                                                                                     |             |                                                                                                                                                                                                                                             |
| 3.00                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | 1.186E-02    |                                                                        |                 |                                        |                                                                    |                                                                                      | _                                                                                   |             |                                                                                                                                                                                                                                             |
| 3.50                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | 1.406E-04    |                                                                        |                 |                                        | 01                                                                 |                                                                                      |                                                                                     | 6 d d       |                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | 0.000E+00    |                                                                        |                 |                                        | Obtainin                                                           | g the Gum                                                                            | pel paraleters                                                                      | from the L  |                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | 0.000E+00    | Here the exce                                                          | edance curve    | follows the                            | Function                                                           | al 0.000                                                                             |                                                                                     | Do not Chi  |                                                                                                                                                                                                                                             |
| Gumbel From                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 | 0.000E+00    | function:                                                              |                 |                                        | Scale =                                                            | 0.112                                                                                | / Location=                                                                         | 2.5000      |                                                                                                                                                                                                                                             |
| Exceedance                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 | 2.552E-39    |                                                                        |                 |                                        | Mean an                                                            | d Standard                                                                           | Dev. Are wh                                                                         | tten to A4, |                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | -3.169E-06   | Ht(x)=H0 exp                                                           | (-x/b),         |                                        |                                                                    |                                                                                      |                                                                                     |             |                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | -1./1/E-Ub   |                                                                        |                 |                                        |                                                                    |                                                                                      |                                                                                     |             |                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | -3.999E-08   | where H0 = 4.                                                          | .2683e9; b = 0  | .112742                                |                                                                    |                                                                                      |                                                                                     |             |                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |              |                                                                        |                 |                                        |                                                                    |                                                                                      |                                                                                     |             |                                                                                                                                                                                                                                             |
| A                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |              | в                                                                      | С               | D                                      | -                                                                  | F                                                                                    | F                                                                                   | G           |                                                                                                                                                                                                                                             |
| 4 N.D                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 | E            | -                                                                      | Defec           | 1 2 D                                  | ama                                                                | 12 Ar                                                                                |                                                                                     | ta          |                                                                                                                                                                                                                                             |
| N Damage Types                                                                                                                                                                                                                                                                                                                                                                                                              | 1                               | Expected     | viax damages                                                           | Delec           | Expecte                                | d in 1                                                             | #01//01                                                                              |                                                                                     | La          | 1 N Rows in                                                                                                                                                                                                                                 |
| 3 N Rows in Defect                                                                                                                                                                                                                                                                                                                                                                                                          | Matrix                          | N Rows in    | Damage Mat                                                             | rix             | Expecte                                | a in                                                               | m0117701                                                                             | 11063                                                                               |             | - <u>2</u><br>3 Damaria 9                                                                                                                                                                                                                   |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                               |              | 4                                                                      |                 | <ul> <li>This colu</li> </ul>          | imn represe                                                        | ents a num                                                                           | ber of                                                                              |             | 4                                                                                                                                                                                                                                           |
| 5 Characteristic Si                                                                                                                                                                                                                                                                                                                                                                                                         | ze                              | Exceedan     | ces per life                                                           |                 | defects/c                              | lamages ex                                                         | ceeding o                                                                            | ne given in th                                                                      | 10          | 5                                                                                                                                                                                                                                           |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0                             |              | 1.0E-03                                                                |                 | Ten Colur                              | nn per me.                                                         |                                                                                      |                                                                                     |             | 6                                                                                                                                                                                                                                           |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0                             |              | 1 0E-05                                                                |                 |                                        |                                                                    |                                                                                      |                                                                                     |             |                                                                                                                                                                                                                                             |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |              | 1.02.00                                                                |                 |                                        |                                                                    |                                                                                      |                                                                                     |             | 0                                                                                                                                                                                                                                           |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                             |              | 1.0E+00                                                                | EO              | = 1                                    | .0000                                                              |                                                                                      |                                                                                     |             | 9                                                                                                                                                                                                                                           |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                             |              | 1.0E+00<br>5.1E-01<br>2.6E-01                                          | E0<br>B         | = 1                                    | .0000                                                              |                                                                                      |                                                                                     |             | - <u>9</u><br>- 10                                                                                                                                                                                                                          |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0<br>1.0<br>2.0<br>3.0        | <u> </u>     | 1.0E+00<br>5.1E-01<br>2.6E-01<br>1.4E-01                               | E0<br>B         | = 1<br>= 1<br>This colur               | .0000<br>.5000<br>nn represer                                      | nts nodal v                                                                          | alues of                                                                            |             | 9<br>10<br>11                                                                                                                                                                                                                               |
| 9<br>10<br>11<br>12<br>13                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0<br>1.0<br>2.0<br>3.0<br>4.0 | <u> </u>     | 1.0E+00<br>5.1E-01<br>2.6E-01<br>1.4E-01<br>6.9E-02                    | E0<br>B         | = 1<br>= 1<br>This colur<br>defect/dar | .0000<br>.5000<br>nn represer<br>nage size i                       | nts nodal v<br>n ascendir                                                            | alues of<br>g order.                                                                |             | 9<br>10<br>11<br>12                                                                                                                                                                                                                         |
| 9<br>10<br>11<br>12<br>13<br>14                                                                                                                                                                                                                                                                                                                                                                                             | 0.0<br>1.0<br>2.0<br>3.0<br>4.0 | Delaminati   | 1.0E+00<br>5.1E-01<br>2.6E-01<br>1.4E-01<br>6.9E-02<br>ons             | E0<br>B         | = 1<br>= 1<br>This colur<br>defect/dar | .0000<br>.5000<br>nn represer<br>nage size i                       | nts nodal v<br>n ascendin                                                            | alues of<br>g order.                                                                |             | 9<br>10<br>11<br>12<br>13<br>14                                                                                                                                                                                                             |
| 9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                     | 0.0<br>1.0<br>2.0<br>3.0<br>4.0 | Delaminati   | 1.0E+00<br>5.1E-01<br>2.6E-01<br>1.4E-01<br>6.9E-02<br>ons             | E0<br>B         | = 1<br>= 1<br>This colum<br>defect/dar | .0000<br>.5000<br>nn represer<br>nage size i                       | nts nodal v<br>n ascendin<br>e the dama                                              | g order.                                                                            | edance      | 9<br>10<br>11<br>12<br>13<br>14<br>15                                                                                                                                                                                                       |
| 9<br>10<br>11<br>12<br>13<br>14<br>16<br>1.0E+00                                                                                                                                                                                                                                                                                                                                                                            | 0.0<br>1.0<br>2.0<br>3.0<br>4.0 | Delaminati   | 1.0E+00<br>5.1E-01<br>2.6E-01<br>1.4E-01<br>6.9E-02<br>ons             | E0<br>B         | = 1<br>= 1<br>This colur<br>defect/dar | .0000<br>.5000<br>nn represer<br>nage size i<br>Her<br>cun         | nts nodal v<br>n ascendin<br>e the dama<br>ve follows t                              | alues of<br>g order.<br>ge size exc<br>ne function:                                 | edance      | 9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                                                                                                                                                                                 |
| 9<br>10<br>11<br>12<br>13<br>13<br>14<br>15<br>16<br>1.0E+00<br>18<br>10                                                                                                                                                                                                                                                                                                                                                    | 0.0<br>1.0<br>2.0<br>3.0<br>4.0 | Delaminati   | 1.0E+00<br>5.1E-01<br>2.6E-01<br>1.4E-01<br>6.9E-02<br>ons             | E0<br>B         | = 1<br>= 1<br>This colur<br>defect/dar | .0000<br>.5000<br>nn represer<br>nage size i<br>D Her<br>cun       | nts nodal va<br>n ascendin<br>e the dama<br>ve follows t                             | alues of<br>g order.<br>Ige size exc<br>he function:                                | eedance     | 9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17                                                                                                                                                                                           |
| 9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>1.0E+00<br>19<br>19<br>20<br>9                                                                                                                                                                                                                                                                                                                                               | 0.0<br>1.0<br>2.0<br>3.0<br>4.0 | Delaminati   | 1.0E+00<br>5.1E-01<br>2.6E-01<br>1.4E-01<br>6.9E-02<br>ons             | E0<br>B         | = 1<br>= 1<br>This colur<br>defect/dar | .0000<br>.5000<br>nage size i<br>nage size i<br>cun<br>g<br>Ed(    | nts nodal v.<br>n ascendin<br>e the dama<br>re follows t<br>D)=E0 exp                | alues of<br>g order.<br>ge size exc<br>he function:<br>(-D/B),                      | eedance     | 9<br>10<br>11<br>12<br>13<br>13<br>14<br>15<br>16<br>16<br>17<br>17<br>18<br>19                                                                                                                                                             |
| 9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>1.0E+00<br>10<br>13<br>15<br>1.0E+00<br>10<br>10<br>12<br>13<br>14<br>15<br>10<br>12<br>13<br>14<br>15<br>16<br>10<br>12<br>13<br>14<br>15<br>16<br>16<br>17<br>17<br>18<br>18<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19                                                                                                                                   | 0.0 1.0 2.0 3.0 4.0             | Delaminati   | 1.0E+00<br>5.1E-01<br>2.6E-01<br>1.4E-01<br>6.9E-02<br>ons             | 0 4 f           | = 1<br>= 1<br>This colur<br>defect/dar | .0000<br>.5000<br>nn represer<br>nage size i<br>Her<br>curv<br>Ed( | nts nodal w<br>n ascendin<br>e the dama<br>re follows t<br>D)=E0 exp<br>me E0 = 1;   | alues of<br>g order.<br>ge size exc<br>ne function:<br>(-D/B),<br>B = 1.5           | eedance     | 9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20                                                                                                                                                                         |
| 9<br>10<br>11<br>12<br>12<br>13<br>14<br>15<br>1.0E+00<br>10<br>13<br>10<br>10<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12                                                                                                                                                                                                                                                                                  | 0.0 1.0 2.0 3.0 4.0             | Delaminati   | 1.0E+00<br>5.1E-01<br>1.4E-01<br>6.9E-02<br>ons                        |                 | = 1<br>= 1<br>This colur<br>defect/dar | .0000<br>.5000<br>nn represer<br>nage size i<br>Left<br>Ed(        | nts nodal va<br>n ascendin<br>e the dama<br>re follows t<br>D)=E0 exp<br>are E0 = 1; | alues of<br>g order.<br>gge size exc<br>ne function:<br>(-D/B),<br>B = 1.5          | eedance     | 9           10           11           12           13           14           15           16           17           18           19           20           21                                                                               |
| 9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>1.0E+00<br>18<br>0<br>19<br>20<br>21<br>22<br>23<br>1.0E-01<br>-<br>24<br>4<br>1.0E-01<br>-                                                                                                                                                                                                                                                                            | 0.0<br>1.0<br>2.0<br>3.0<br>4.0 | Delaminati   | 1.0E+00<br>5.1E-01<br>2.6E-01<br>1.4E-01<br>6.9E-02<br>ons             |                 | = 1<br>= 1<br>This colur<br>defect/dar | .0000<br>.5000<br>mn represent<br>mage size i<br>Her<br>cum<br>Ed( | nts nodal v<br>n ascendir<br>e the dama<br>re follows t<br>D)=E0 exp<br>re E0 = 1;   | alues of g order.<br>gg order.<br>gg size exc<br>he function:<br>(-D/B),<br>B = 1.5 | eedance     | 9           10           11           12           13           14           15           16           17           18           19           20           21           22                                                                  |
| 9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>1.0E+00<br>18<br>10<br>13<br>14<br>15<br>1.0E+00<br>10<br>12<br>13<br>14<br>15<br>1.0E+00<br>12<br>13<br>14<br>15<br>1.0E+00<br>12<br>13<br>14<br>15<br>10<br>12<br>13<br>14<br>15<br>10<br>10<br>12<br>13<br>14<br>15<br>10<br>10<br>11<br>12<br>13<br>14<br>15<br>10<br>10<br>10<br>11<br>12<br>13<br>14<br>15<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 0.0 4.0 2.0 3.0 4.0 0           | Delaminati   | 1.0E+00<br>5.1E-01<br>1.4E-01<br>6.9E-02<br>ons                        |                 | = 1<br>= 1<br>This colur<br>defect/dar | .0000<br>.5000<br>nage size i<br>Her<br>cur<br>Ed(                 | nts nodal w<br>n ascendin<br>e the dama<br>re follows t<br>D)=E0 exp<br>re E0 = 1;   | alues of<br>g order.<br>g order.<br>e function:<br>(-D/B),<br>B = 1.5               | eedance     | 9           10           11           12           13           14           15           16           17           18           19           20           21           22           23           24                                        |
| 9<br>9<br>10<br>11<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12                                                                                                                                                                                                                                                                                                                                                    | 0.0 1.0 2.0 3.0 4.0             | Delaminati   | 1 0E+00<br>5.1E-01<br>2.6E-01<br>1.4E-01<br>6.9E-02<br>ons             |                 | = 1<br>This colur<br>defect/dar        | .0000<br>.5000<br>nn represer<br>nage size i<br>Her<br>cun<br>Ed(  | nts nodal v<br>n ascendin<br>e the dama<br>re follows t<br>D)=E0 exp<br>rre E0 = 1;  | alues of<br>g order.<br>ge size exc<br>ne function:<br>(-D/B),<br>B = 1.5           | eedance     | 9           10           11           12           13           14           16           17           18           19           20           21           22           23           24           25                                        |
| 9<br>10<br>11<br>12<br>12<br>13<br>14<br>15<br>16<br>1.0E+00<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                          | 0.0<br>4.0<br>2.0<br>3.0<br>4.0 | Delaminati   | 1.0E+00<br>5.1E-01<br>2.6E-01<br>1.4E-01<br>6.9E-02<br>ons             | 0 4             | = 1<br>This colum<br>defect/dar        | .0000<br>.5000<br>mage size i<br>                                  | nts nodal w<br>n ascendin<br>e the dama<br>re follows t<br>D)=E0 exp<br>are E0 = 1;  | alues of<br>g order.<br>ge size exc<br>ne function:<br>(-D/B),<br>B = 1.5           | eedance     | 9           10           11           12           13           14           15           16           17           18           201           221           223           224           226                                                |
| 9<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>1.0E+00<br>18<br>1.0E+00<br>10<br>10<br>12<br>13<br>14<br>15<br>1.0E+00<br>10<br>12<br>13<br>14<br>15<br>1.0E+00<br>12<br>13<br>10<br>12<br>13<br>14<br>15<br>1.0E+00<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                             | 0.0 1.0 2.0 3.0 4.0             | Delaminati   | 1 0E +00<br>2 6E-01<br>2 6E-01<br>1.4E-01<br>1.4E-01<br>6.9E-02<br>ons | 0 4             | This colur<br>defect/dar               | .5000<br>.5000<br>mage size i<br>Her<br>cur<br>ed(                 | nts nodal v;<br>n ascendir<br>e the dama<br>re follows t<br>D)=E0 exp<br>rre E0 = 1; | alues of<br>g order.<br>ge size exc<br>re function:<br>(-D/B),<br>B = 1.5           | eedance     | 9           10           11           12           13           14           15           16           17           18           19           20           21           22           23           24           25           26           27 |



Exceedance



### **Probability of Failure Predictions**

| Arial |    |   | 10 - B I U                | EII       | 1 \$ %     | · :::::::::::::::::::::::::::::::::::: |                    | 0 · A ·      |             |        |      |   |   |   |   |   |   |   |
|-------|----|---|---------------------------|-----------|------------|----------------------------------------|--------------------|--------------|-------------|--------|------|---|---|---|---|---|---|---|
| N     | 18 | + | fx                        |           |            |                                        |                    | _            |             |        |      |   |   |   |   |   |   |   |
|       | А  | В | C                         | D         | E          | F                                      | G                  | H            | 1           | J      | K    | L | M | N | 0 | P | Q | 7 |
|       |    |   | No simulations=           | 50<br>100 |            | Simulate                               |                    |              |             | -      | 1    |   |   |   |   |   |   |   |
|       |    |   |                           |           |            | 0.00070                                | 05                 | HER ALTER AN | and the Of  | _      |      |   |   |   |   |   |   |   |
|       |    |   |                           |           |            | 0.00053                                | Bin                | Frequency    | umulative % |        |      |   |   |   |   | - |   |   |
|       |    | - | 5 34375 04                | Marin at  | 0.00000.00 | 0.00055                                | 0.00053            | 0.0000       | .00%        |        |      |   |   |   |   |   |   |   |
| -     | _  | - | 5.3127 E-04               | Ded Deve  | 0.0200E-05 | 0.00057                                | 0.00055            | 4.0000       | 0.00%       |        |      |   |   |   |   |   |   |   |
|       |    |   | 5.349UE-U4<br>5.4017E-04  | Stu.Dev - | 5.3/9/E-05 | 0.00059                                | 0.00057            | 5,0000       | 26.00%      |        |      |   | _ |   |   |   |   | _ |
| 7     |    |   | 5.4017 E-04               | Cv-       | 9.0030E-02 | 0.00003                                | 0.00055            | 14 0000      | 50.00%      |        |      |   |   |   |   |   |   | _ |
| 1     |    |   | 5.4954E-04<br>£ £970E 0.4 |           |            | 0.00063                                | 0.00001            | 14.0000      | 04.00.%     |        |      |   |   |   |   |   |   | _ |
| 2     |    |   | 5.53700-04                |           |            | 0.00000                                | 0.00000            | 3,0000       | 00.00 %     |        |      |   |   |   |   |   |   |   |
| 2     |    | - | 5.5020E-04                |           |            | Pannn n                                | 0.00005            | 3,0000       | 92.00%      |        |      |   |   |   |   |   |   |   |
| 1     |    |   | 5.57.50E-04               |           |            | 0.00000                                | Panno n            | 1,0000       | 100.00%     |        |      |   |   |   | - |   |   |   |
| -     |    | - | 5.5040C-04                |           |            |                                        | Mora               | 0,000        | 100.00%     |        |      |   |   |   |   |   |   |   |
| 8     |    | - | 5.5000E-04                |           |            |                                        | MOIE               | 0.0000       | 100.0070    |        |      |   |   |   |   |   |   |   |
| 7     |    |   | 5.6011E-04                |           |            |                                        | 1                  |              |             |        |      |   |   | 1 | - |   |   |   |
| 3     |    |   | 5.6639E-04                |           |            |                                        | listog             | ram          |             |        |      |   |   | - |   |   |   | - |
| 3     |    |   | 5.6584E-04                |           |            |                                        |                    |              |             |        | -    |   |   |   | - |   |   |   |
| í.    |    |   | 5.0004E-04                | 1         | 15 2552    |                                        |                    | 152222       |             |        |      |   |   |   |   |   |   |   |
|       |    |   | 5 7843E-04                |           | 15.0000    | T ii                                   |                    | 120.00%      |             |        |      |   |   |   |   |   |   |   |
|       |    |   | 5 7954E-04                | - 2       |            |                                        | 1000               | 100.00%      |             |        |      | - |   |   |   |   |   | - |
|       |    |   | 5 8505E-04                | Ē         | 10,0000    | + 11                                   | - 1                | 80.00%       | E Fe        |        |      |   |   |   |   |   |   | - |
|       |    |   | 5 8985E-04                | <u> </u>  |            | T 🖌                                    | +1                 | 60 00%       | E FI        | equen  | cy   |   |   |   |   |   |   |   |
|       |    |   | 5 9010E-04                | 5         | 5 0000     |                                        |                    | 10.00%       | - Ci        | imulat | ve % | - |   |   |   |   | - | - |
|       |    |   | 5 9094E-04                |           | 5.0000     |                                        |                    | 10.00%       |             |        |      |   |   |   |   |   |   |   |
| 7     |    |   | 5 9168E-04                |           |            |                                        | T ·                | 20.00%       |             |        | -    |   |   |   |   |   |   |   |
| 3     |    |   | 5 9192E-04                |           | 0.0000     | 4-bill hilling                         | <del>11111</del> , | .00%         |             |        | -    |   |   |   |   |   |   |   |
| a     |    |   | 5 9551E-04                |           |            |                                        | à                  |              |             |        |      |   |   |   |   |   |   | - |
| 1     |    |   | 5 9665E-04                |           | 5          | 6666                                   | 3                  |              |             |        |      |   |   |   |   |   |   |   |
| 1     |    |   | 5 9666E-04                |           | 000        | 0,0,0,0,0                              |                    |              |             |        |      |   |   |   |   |   |   |   |
|       |    |   | 5 9720E-04                |           | 0.0.       | 0.0.0.                                 |                    |              |             |        |      |   |   |   |   |   |   | - |
| 3     |    |   | 5 9738E-04                |           |            | 12. A 20. A                            | 1000               |              |             |        |      |   |   | 1 |   |   |   | - |
| 4     |    |   | 5 9917E-04                |           | PI         | obability o                            | of failur          | e            |             |        |      |   |   |   |   |   |   |   |
|       |    |   | 0.001112.04               | 1         |            |                                        |                    |              |             |        |      |   |   |   |   |   |   |   |

# Sample Problem Lear Fan 2100 Composite Wing Panels

- **Structural Component:** Lear Fan 2100 composite wing panels
- Source of Data: Report DOT/FAA/AR-01/55, Washington DC, January 2002
- **Output:** Inspection schedule over the life-cycle of a structure for maximum safety

#### Features:

- Two Damage Types: Delamination and Hole/Crack
- Two Inspection Types: Post Flight and Regular Maintenance
- Two Repair Types (Field and Depot)
- Relatively Low Damage Sensitivity
- Temperature Effects Included

Transport Aircraft Structures

Relatively Low Output Reliability







# **Work in Progress**

#### (September 1, 2006 – August 31, 2007)

The primary objective of this year's study is to demonstrate the potential benefit of the currently developed methodology in composite aircraft maintenance and certification.

Major tasks to be accomplished are:

- Task 3.1 Analysis Method Enhancement
- Task 3.2 Methodology Implementation
- Task 3.3 Method Demonstration and Documentation



# **Future Developments**

#### **Progressive failure considerations:**

- Fatigue damage accumulation
- Delamination propagation

#### **Extend software capability:**

- Simulate environments as time-dependent multidimensional random functions
- Stochastic Finite Element Model: FE Model with statistical properties
- Full spectra of impact conditions to predict the type and size of expected damage vs. frequency through FE impact simulation



#### The Probabilistic Model We will have in 2007

| Input                                                                                                       | Presentation Format                                                                                                                              | Factors Considered                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operational Environments:<br>• Mechanical loads<br>• Temperature<br>• Time in operation                     | Exceedance data for finite set of<br>"design cases"                                                                                              | <ul> <li>Extreme values for static strength,<br/>stiffness, aeroelasticity using finite<br/>set of "design cases"</li> <li>Material aging in empirical form</li> </ul> |
| Stochastic Structure:<br>•Static strength/stiffness<br>•Aging<br>•Flutter, LCO                              | Residual properties for finite set of<br>"design cases" for each structural<br>subcomponent (panel)                                              | Empirical residual properties<br>(strength/stiffness) as a function of<br>damage type/size and aging time                                                              |
| Impact conditions:<br>•hail, birds, stones, debris<br>•tools, ladders, trucks, etc                          | Probabilistic description for resulting<br>damage:<br>• Size/type<br>• Frequency                                                                 | Damage size exceedance data for<br>finite set of damage types obtained<br>on existing components in<br>operations                                                      |
| Maintenance plan:<br>•Inspection interval<br>•Inspection method<br>•Repair method<br>•Repair decision logic | Probabilistic description of each<br>condition:<br>• Probability of damage detection<br>• Strength/stiffness recovery<br>• Decision-making rules | All formalized features of maintenance plan                                                                                                                            |



### Look into the Future: Integration with FEA Software





## **Required Capabilities**

| Input                                                                                                       | Presentation Format                                                                                                                                                                                               | Factor Considered                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operational Environments:<br>• Mechanical loads<br>• Temperature<br>• Humidity<br>• Time in operation       | Simulated as time-dependent<br>multidimensional random function                                                                                                                                                   | <ul> <li>Extreme values for static strength,<br/>stiffness, aeroelasticity</li> <li>Fatigue damage accumulation</li> <li>Crack propagation</li> <li>Material aging as a function of<br/>environmental history</li> </ul> |
| Stochastic Structure:<br>•Static strength/stiffness<br>•Geometry<br>•Aging<br>•Fatigue<br>•Flutter, LCO     | Stochastic Finite Element Model: FE<br>Model with random properties                                                                                                                                               | Randomized structural properties<br>with characteristic size of finite<br>element                                                                                                                                        |
| Impact conditions:<br>•hail, birds, stones, debris<br>•tools, ladders, trucks, etc                          | Probabilistic description of each<br>condition:<br>• Frequency<br>• Size, density<br>• Velocity, angle                                                                                                            | Full spectra of impact conditions to<br>predict the type and size of<br>expected damage vs. frequency<br>through FE impact simulation                                                                                    |
| Maintenance plan:<br>•Inspection interval<br>•Inspection method<br>•Repair method<br>•Repair decision logic | <ul> <li>Probabilistic description of each condition:</li> <li>Probability of damage detection</li> <li>Scatter of inspection time</li> <li>Strength/stiffness recovery</li> <li>Decision-making rules</li> </ul> | All formalized features of maintenance plan                                                                                                                                                                              |



# **A Look Forward**





#### Benefit to Aviation

- The present method allows engineers to design damage tolerant composite structures for a predetermined level of reliability, as required by FAR 25.
- The present study makes it possible to determine the relationship among the reliability level, inspection interval, inspection method, and repair quality to minimize the maintenance cost and risk of structural failure.

#### • Future needs

- A standardized methodology for establishing an optimal inspection schedule for aircraft manufacturers and operators.
- Enhanced damage data reporting requirements regulated by the FAA.



# **THANK YOU**





## Service Difficulty Report (SDR)

- The Service Difficulty Report (SDR) is a database that contains damage reports almost exclusively from line and base maintenance in the U.S.
- A typical SDR is like a mechanics report on an inspection/ maintenance task, details including aircraft type and registration, damage type, damage location, sometimes a brief description of the damage itself
- SDRs containing external skin damage may be used to help determining the frequency and severity of impact damage occurrence in different part of the aircraft
- The SDRs for Boeing 767 from year 01/2002 to 03/2006 have been compiled as examples shown in the next couple pages



#### **SDR Summary**

- Aluminum-Honeycomb sandwich delamination is a reoccurring problem – slats, flaps and stabilizers on 767s shows large number of delamination occurrences
- Nearly all dents, holes and gouges are on the lower fuselage and are caused by ground activities, e.g. trucks and operation staff
- Majority of the damages on the upper fuselage are caused by lightning strikes
- Large number of cracks and fatigue damages occurred near the horizontal stabilizer cutout region
- Although the wings have very large areas, relatively few major damages are recorded



## **SDR Data Source Limitations**

- Scarce description of the source of damage, thus hard to evaluate the effect of the same impact event to a composite structure, i.e. what kind of damage will result in cracks, delamination or even no damage at all?
- Composite vs. metal a drunk catering truck driver causing a dent in the metal fuselage, may now causes a crack (or other forms of damage)
- Since reports are generated during line and base maintenances, the time of event is mostly lost, thus it is hard to know if damage occurred in-flight or on ground, and under what kind of loads
- No information about repair quality, which could greatly affects the residual strength and modulus of the composite structures





#### What we have:

- Developed he method for determining POF and the inspection intervals.
- > Developed the preliminary computer software for calculating POF and the inspection intervals.
- > Mined statistical data on damage and other probabilistic parameters.

#### What we will have:

- > An enhanced method for determining POF and the inspection intervals.
- > A user friendly computer code for public use in probabilistic design of composite structures.