

Analysis of Fastener Disbond/ Delamination Arrest Mechanism for Laminated Composite Structures

Kuen Y. Lin, Eric Cheung, Phillip Gray, and Erik Bruun

Department of Aeronautics and Astronautics University of Washington

November 1st, 2011

Advanced Materials in Transport Aircraft Structures FRAS Sponsored Project

Principal Investigator:

- Dr. Kuen Y. Lin, Aeronautics and Astronautics, UW
- PhD Student: Chi Ho "Eric" Cheung, UW

Graduate Research Assistant: Phillip Gray, Erik Bruun, UW

- FAA Personnel: Lynn Pham, Larry Ilcewicz, Curtis Davies
- Industry Participants: Marc Piehl (Boeing Project Manager), Gerald Mabson, Eric Cregger, Matt Dilligan, Doug Frisch (Boeing)
- Industry Sponsors: The Boeing Company

Objectives

- To understand the effectiveness of delamination/disbond arrest mechanisms
- To develop analysis tools for design and optimization

Tasks

- 1. Develop Finite Element models in ABAQUS [completed]
- 2. Develop 1-D (beam) [in progress] analytical solution
- 3. Develop and conduct validation experiments [in progress]
- Conduct sensitivity studies on fastener effectiveness and stacking sequence effects [pending]
- 5. Implement reliability analysis capability [pending]

Advanced Materials in Transport Aircraft Structures

- AMTAS 2010 http://depts.washington.edu/amtas/events/amtas_10fall/ Cheung_Fall_2010.pdf
 - Design and FEA of a Novel 3-Plate Crack Propagation Specimen
 - Development of Analytical Solution to the Crack Arrest Problem
- JAMS 2011 http://www.niar.wichita.edu/NIARWorkshops/LinkClick.aspx? fileticket=gd2SsZjR360%3d&tabid=123&mid=756
 - 1. Analytical Solution to the 3-Plate Crack Propagation Specimen
 - 2. Effect of Fastener Hole Clearance
 - 3. Early Testing of the 3-Plate Crack Propagation Specimen

Advanced Materials in Transport Aircraft Structures Advanced Materials in Transport Aircraft Structures Advanced Materials in Transport Aircraft Structures

- 3 x 24-ply quasi-isotropic laminate with crack at fabric/ fabric interface; secondary bonding
- 3 x 24-ply quasi-isotropic laminate with crack at 0/0 interface; co-cured
- 0.25" Titanium fastener installed at half installation toque: 40 in-lb
- Initial cracks are implanted with Teflon inserts 1.5" from the fastener

Advanced Materials in Transport Aircraft Structures Specimens

- Crack initiation is immediately followed by ultimate failure
 - Filled/Open-hole tension failure of the outer laminates
 - Crack propagation load > ultimate load in tension
- Crack jumps from the bondline to a couple plies into the outer laminates
- Fracture toughness of the secondary bond is too high

Advanced Materials in Transport Aircraft Structures Specimens

	Fastener Installed	Initiation Load (kip)	Ultimate Failure Load (kip)	Propagation Mode	Ultimate Failure Mode
1	Yes	35.5	35.5	Disbond w/ Bridging	Net-section Failure
2 (Pre-Crack)	Yes	36.6	36.6	Disbond w/ Bridging	Net-section Failure
3	Yes	37.0	37.0	Disbond w/ Bridging	Net-section Failure
4	Yes	36.8	36.8	Disbond w/ Bridging	Net-section Failure
5	No	35.0	35.0	Disbond w/ Bridging	Net-section Failure
6	Yes	37.2	37.2	Disbond w/ Bridging	Net-section Failure
7	Yes	36.2	36.2	Disbond w/ Bridging	Net-section Failure
8	No	35.9	35.9	Disbond w/ Bridging	Net-section Failure

Advanced Materials in Transport Aircraft Structures Specimens

- Crack initiation load occurs at ~20.6 kip
- Initial crack growth is stable
 - Fastener with significant installation torque could have stabilized crack propagation
- Cracks reach fastener at ~23.6 kip
- Crack front stays at 0°/ 0° interface
- Ultimate failure occurs at ~30.4 kip
 - Filled hole tensile failure of outer laminates
- Minor crack growth (V-shape) detected around the fastener

	Initiation Load	Crack Reaches Fastener	Crack location at Test-end (NDI)	Crack front shape at Test- end	Test-end load	Tested to Ult. Failure
1	20.6 kip	23.2 kip	1.1 in	Straight	30.4 kip	Yes
2	19.4 kip	25.1 kip	0.5 to 1.1 in	Straight, but at an angle	29.7 kip	Yes
3	21.2 kip	23.6 kip	0.6 in	V-shape	29.5 kip	No
4	24.3 kip	24.3 kip	0.6 in	V-shape	29.3 kip	No

Advanced Materials in Transport Aircraft Structures Future of the **3-Plate Specimen**

- Competing failure mode is a major hurdle
 - The fastener definitively arrested the crack, but unable to determine the maximum capability
- Specimen can be optimized for higher G_{II} available
 - Increase stiffness of the center plate; decrease stiffness of outer plate
 - Increase total thickness
 - But loses flexibility in choosing lay-up
- G_{IIC} could be reduced by using a different material system or manufacturing technique
- Arrest capability could be reduced by using a smaller fastener and reducing the installation torque

Advanced Materials in Transport Aircraft Structures Advanced Materials in Transport Aircraft Structures Advanced Materials in Transport Aircraft Structures

Advanced Materials in Transport Aircraft Structures Advanced Materials in Transport Aircraft Structures

Tool

Advanced Materials in Transport Aircraft Structures Advanced Materials in Transport Aircraft Structures

- Fastener install torque (friction) is a major driver of crack arrest capability
- High-stiffness lay-up experience more increase in arrest capability for the same fastener size and torque
- Fabrication issues persist
 - Use heat press
- Crack propagation is not symmetric across the width of the specimen, especially near the fastener

3-Plate Specimen

- Optimize thickness and lay-up
- Pre-cracking
- 2-Plate Specimen
- Improve manufacturing quality
- Different thicknesses and lay-ups
- Different fastener sizes
- Analytical solution