The Effects of Damage and Uncertainty on the Aeroelastic / Aeroservoelastic Behavior and Safety of Composite Aircraft

Presented by Dr. Eli Livne Department of Aeronautics and Astronautics University of Washington

Contributors

- Department of Aeronautics and Astronautics
 - Dr. Eli Livne Pl, Professor
- Department of Mechanical Engineering
 - Francesca Paltera, PhD student
 - Dr. Mark Tuttle, co-PI, professor and chairman
- Boeing Commercial, Seattle
 - Dr. James Gordon, Associate Technical Fellow, Flutter Methods
 Development
 - Dr. Kumar Bhatia, Senior Technical Fellow, Aeroelasticity and Multidisciplinary Optimization
- FAA Technical Monitor
 - Curtis Davies, Program Manager of JAMS, FAA/Materials & Structures
- Other FAA Personnel Involved
 - Dr. Larry Ilcewicz, Chief Scientific and Technical Advisor for Advanced Composite Materials
 - Carl Niedermeyer, Airframe and Cabin Safety Branch (ANM-115), Standards Staff - Transport Airplane Directorate (previously: Boeing flutter manager for the 787 and 747 programs_

- Motivation & Key Issues a Review of the complete project:
- 1. Probabilistic aeroelastic reliability estimation
- 2. Simulation of aeroelastic behavior with local structural nonlinearities
- 3. Simulation of aeroelastic behavior with global distributed structural nonlinearities
- 4. Experimental aeroelasticity
- 2009 focus: Experimental aeroelastic capabilities for testing degraded, damaged, nonlinear composite airframes
 - Development
 - Status

1. Probabilistic Reliability Assessment of Actively Controlled Composite Airframes Including Damage Statistics, Damage Effects, and Maintenance Procedures

Qualifications! Not a real flying structure; Flutter analysis carried out for a cantilevered tail and not for empennage/tail system; Results – problem dependent

Flutter speeds uncertainty in a transport-type Composite vertical tail/rudder system. Note the possible switch in flutter mechanisms For certain combinations of system parameters.

Accounting for damage statistics: the effect on probability of flutter failure per life of the flutter design safety margin used To obtain the same flutter reliability in the accounting-for-possible-damage case Compared to no-damage case, the flutter design margin Has to increase from 1.15 to 1.2 (in the vertical tail case).

- 2. Local nonlinear structural behavior:
 - Delamination, changes in joints/attachments stiffness and damping, as well as actuator nonlinearities may lead to nonlinear aeroelastic behavior such as Limit Cycle Oscillations (LCO) of control surfaces with stability, vibrations, and fatigue consequences.

- 3. Distributed nonlinear structural behavior:
 - Highly flexible, optimized composite structures (undamaged or damaged) may exhibit geometrically nonlinear structural behavior, with aeroelastic consequences.

Objectives – a Review of the Multi-Year Program

- Develop computational tools (validated by experiments) for <u>automated</u> local/global linear/nonlinear analysis of integrated structures/ aerodynamics / control systems subject to multiple local variations/ damage.
- Develop aeroservoelastic probabilistic / reliability analysis for composite actively-controlled aircraft.
- Link with design optimization tools to affect design and repair considerations.
- Develop a better understanding of effects of local structural and material variations in composites on overall Aeroservoelastic integrity.
- Establish a collaborative expertise base for future response to FAA, NTSB, and industry needs, R&D, training, and education.

2008-2009 Focus: Tail / Rudder Systems

Air Transat 2005

Damaged A310 in the hangar (picture found on the web)

Experiments and experimental capabilities development

- Rudder hinge stiffness nonlinearities and hinge failure can be caused by actuator behavior or by failure of the composite structure locally and globally.
- Use tests to validate and calibrate numerical models a UW / Boeing / FAA collaboration.
- Wind tunnel model designs and tests will start with simulated hinge nonlinearities using nonlinear springs and then proceed to composite rudder structure with actual composite failure mechanisms.

Aeroelastic Experimental Capability and Flutter Experiments

Experiments and experimental capabilities development

General Approach:

- Start with simple models for which experimental and theoretical results already exist the Duke U wing / control surface LCO model
- Expand and generalize by adding
- Develop the model design & construction and test conduction as ell as data processing hardware and software tools
- Use as a foundation upon which to build aeroelastic experimental capabilities using more complex models

UW Flutter Test Wing / Control Surface Design mounted vertically in the UW A&A 3 x 3 wind tunnel

Limit Cycle Oscillations and flutter due to control surface hinge stiffness nonlinearity

The tail / rudder model at the UW's 3 x 3 wind tunnel 2008 - 2009

LCO Tests Status

- Modification of model to allow tests with larger freeplay magnitudes
- Improvement of instrumentation and data processing equipment.
- Modification of model to allow rapid changes in system's characteristics
- Search for / design hinge dampers for tests involving complete loss of actuator stiffness (to allow validation of UW and Boeing computational tools)
- Testing of dampers & modification of model to accept hinge dampers

Design / Construction of Composite Rudders for Flutter Simulations / **Tests of Damaged Rudders Representing Realistic Rudder Designs:** In Progress

Progress

- Progress in the development of the UW's aeroelastic wind tunnel capabilities.
- Linear flutter as well as Limit Cycle Oscillations (LC) tested in the UW's 3 x 3 wind tunnel and used to validate UW's numerical modeling capabilities.
- Correlation with Boeing flutter and LCO simulation runs underway. Wind tunnel tests of tail / rudder systems with actuator failure and with nonlinear dampers – in development.
- Wind tunnel tests of representative tail / rudder systems with realistic rudder composite structures in development.
- Results from this effort will provide valuable data for validation of simulation codes used by industry to certify composite airliners.

Accomplishments

- Development of a comprehensive methodology and computational tools for the estimation of the probabilistic aeroelastic reliability of undamaged and damaged composite airframes.
- Development of a unique coupled nonlinear structural / linear unsteady aerodynamic capability for flutter analysis of geometrically nonlinear optimized composite airframes.
- Development of a wind tunnel aeroelastic testing capability and preparations for nonlinear aeroelastic tests that will provide data for validation of corresponding industry-used codes. Initial focus: the tail / rudder problem.

