

AMTAS Autumn Meeting March 16, 2010

The Effects of Damage and Uncertainty on the Aeroelastic /Aeroservoelastic Behavior and Safety of Composite Aircraft

Presented by

Francesca Paltera UW Mechanical Engineering

- Motivation
- Objectives
- Background
- Review Past Accomplishments
- Recent Progress
- □ Future Work
- □ AMTAS Impact

Motivation

- Understand effects of uncertainty on composite
 Aeroservoelastic structures in terms of Flutter and Limit
 Cycle Oscillations (LCO)
- □ Obtain experimental benchmark results for industry
- Develop automated computational tools for simulation of uncertain aeroelastic structures
- Establish collaborative expertise

- Build an experimental model and carry out aeroelastic/ wind tunnel tests to Flutter and Limit Cycle Oscillations (LCO)
- Implement Uncertainty: local nonlinearities (damage, free play, broken actuator) and global nonlinearities (broken hinge)
- Develop automated computational tools for simulation of Flutter and LCO in presence of nonlinearities

Background

Aerodynamic forces are generated by airflow over a surface

Aeroelasticity is the study of a feedback process involving aerodynamic, elastic and inertial forces

Background

- Flutter is a structural vibration caused by a steady-state air flow over a surface
- □ Flutter induces a rapid periodic motion of the structure
- Flutter is affected by structure's design
- □ Flutter is self-starting
- In extreme cases it can cause <u>serious structural damage</u>

- Change the aerodynamics of structure (stiffness, damping) to avoid flutter
- □ No speed regime is truly immune from flutter
- □ Flutter of real structures difficult to predict

Aeroelastic analysis and wind-tunnel tests **are needed** to predict flutter **for** our **safety** !!

- Limit Cycle Oscillation (LCO) is a structural vibration in between decaying oscillations and flutter
- LCO induces oscillations that grow for a short period, then settle down to a constant magnitude, instead of continuing to amplify.
- It causes <u>fatigue</u> and leads to <u>crack initiation and growth</u>

Review Past Accomplishments Wing Design

2D THREE DEGREES-OF-FREEDOM airfoil section with control surface

Review Past Accomplishments Wing Design

2D THREE DEGREES-OF-FREEDOM

airfoil section with control surface

Advanced Materials in Review Past Accomplishments Wing Design

AS Review Past Accomplishments Wing Design

Advanced Materials in Review Past Accomplishments Wing Design

Advanced Materials in Review Past Accomplishments Wing Manufacturing

Advanced Materials in Review Past Accomplishments Wing Manufacturing

MTAS Review Past Accomplishments Wind Tunnel Fixture

Advanced Materials in Review Past Accomplishments Wind Tunnel Fixture

Review Past Accomplishments Analytical Development for pristine structure

Equation of motion of the system:

$$[M] \begin{cases} \mathbf{A} \\ \mathbf$$

- Two different methods to predict flutter: <u>UG METHOD</u> and <u>ROOT LOCUS</u> <u>TECHNIQUE</u>.
- Two different approaches to solve the equation of motion.

TAS Review Past Accomplishments Flutter Tests

Flutter speed was decreased:

- □ As the distance between the cg of the control surface and the hinge line was increased
- Due to delamination between skin and core
- Due to induced free-play (localized hinge bearing damage)
- □ Due to free-rotation (broken actuator)

Recent Progress Freeplay

- Customize damper response through design (HELP!)
- □ Non-linear damper characterization
- Continue wind tunnel experiments on the wing model
 WITH non-linearities
- Develop automated computational tools for dynamic behavior simulation of non-linear aeroelastic models

- Networking with Industry and Government Experts
- Developing Mentors
- Technical Talks
- Converging onto a Carrier Path

Contributors Thank you!

- Department of Mechanical Engineering
 - Francesca Paltera, PhD student
 - Dr. Mark Tuttle, co-PI, professor and chairman
- Department of Aeronautics and Astronautics
 - Dr. Eli Livne PI, Professor

Boeing Commercial, Seattle

- Dr. James Gordon, Associate Technical Fellow, Flutter Methods Development
- Dr. Kumar Bhatia, Senior Technical Fellow, Aeroelasticity and Multidisciplinary Optimization Curing
- FAA Technical Monitor
 - Curtis Davies, Program Manager of JAMS, FAA/Materials & Structures Future Work
- □ Other FAA Personnel Involved
 - Dr. Larry Ilcewicz, Chief Scientific and Technical Advisor for Advanced Composite Materials
 - Carl Niedermeyer, Airframe and Cabin Safety Branch (ANM-115), Standards Staff Transport Airplane Directorate (previously: Boeing flutter manager for the 787 and 747 programs)