

Failure of Notched Laminates Under Out-of-Plane Bending. Phase V

Fall 2012 Meeting John P. Parmigiani, Oregon State University Failure of Notched Laminates Under Out-of-Plane Bending. Phase V

Motivation and Key Issues

Advanced Materials in

Transport Aircraft Structures

Develop analysis techniques useful in design of composite aircraft structures under out-of-plane loading (bending and shear)

Objective

A Center of Excellence

Determine failure modes and evaluate capabilities of current models to predict failure

- Approach
 - Experiments: Mode 3 fracture
 - Modeling: Progressive damage development and delamination (ABAQUS) under out-of-plane loading

Failure of Notched Laminates Under Out-of-Plane Bending. Advanced Materials in Phase V Transport Aircraft Structures

- Principal Investigators & Researchers
 - John Parmigiani (PI) & Brian Bay; OSU faculty
 - T. Wright, T. McKenzie, I. Hyder; OSU grad students
- FAA Technical Monitor
 - Curt Davies

A Center of Excellence

- Lynn Pham
- Other FAA Personnel Involved
 - Larry Ilcewicz
- **Industry Participation**
 - Gerry Mabson, Boeing (technical advisor)
 - Tom Walker, NSE Composites (technical advisor)

Phase I (2007-08)

- Out-of-plane bending experiments w/composite plates
- ABAQUS modeling with progressive damage

Phase II (2008-09)

- ABAQUS modeling with buckling delamination added
- Sensitivity study of (generic) material property values

Phase III (2009-10)

• ABAQUS modeling w/ more delamination interfaces

- Phase IV (2010-11)
 - Out-of-plane shear experiments
 & ABAQUS modeling
 - Further study of additional delamination interfaces for out-of-plane bending
 - Initiating vs. propagating toughness values for out-of-plane bending
 - Feasibility of Abaqus/Explicit and XFEM for future work
 - Sensitivity study using Boeing mat' I property values
 - Special cases: all-ninety and all-zero degree plies for out-of-plane bending

Phase V (2011-12)

- Out-of-plane shear (mode III) experiments & ABAQUS modeling
- Evaluate the ABAQUS plug-in Helius MCT (Firehole Composites) for use in modeling progressive damage in composites and applicability to this project
- Special cases: all-ninety and all-zero degree plies for out-of-plane bending

- Out-of-plane shear: Experimental results
- Out-of-plane shear: Modeling results
- Helius MCT Evaluation results
- Out-of-plane bending, all-ninety and all-zero ply results

- Out-of-plane shear: Experimental results
- Out-of-plane shear: Modeling results
- Helius MCT Evaluation results
- Out-of-plane bending, all-ninety and all-zero ply results

Advanced Materials in Transport Aircraft Structures Out-of-plane shear: Experimental results

- Experimental Set-up & Plan
 - Edge-notched CF panels displaced to maximum load
 - Mode III fracture
 - Metrics
 - Applied displacement
 - Applied load
 - Notch-tip strain field (via DIC, digital image correlation)
 - Six ply layups
 - Six specimens / layup
 - Three "up"
 - Three "down"

• Maximum applied load (failure load)

	Max Force per Test [kN]							
Layup								
(#plies / %	1	2	3	4	5	6	MEAN	
zero degree)								
40/50%	5.552	5.345	5.122	6.103	5.395	5.321	5.473	
40/30%	5.342	5.363	6.061	5.616	6.176	5.690	5.708	
40/10%	3.891	4.161	4.112	4.016	4.277	4.148	4.101	
20/50%	1.751	1.859	1.929	1.691	1.740	1.801	1.795	
20/30%	1.484	1.541	1.541	1.456	1.527	1.638	1.531	
20/10%	1.290	1.215	1.258	1.254	1.198	1.336	1.259	

• Applied Load vs. Displacement plot for 40ply/30%

• Notch-tip strain fields for 40ply/30%, UP orientation

1. Linear Region Before 1st Visible Fracture

2. Linear Region At 1st Visible Fracture

3. End of Linear Region

4. Point of Max Load

• Notch-tip strain fields for 40ply/30%, DOWN

1. Linear Region Before 1st Visible Fracture

2. Linear Region At 1st Visible Fracture

3. End of Linear Region

4. Point of Max Load

- Conclusions / Future work
 - Experimental set-up works well... good data
 - Time to write up final results
 - Graduate student!

- Out-of-plane shear: Experimental results
- Out-of-plane shear: Modeling results
- Helius MCT Evaluation results
- Out-of-plane bending, all-ninety and all-zero ply results

- Notch-tip mesh selection
 - Damage causes strength and stiffness degradation leading to strain softening behavior
 - Strain softening causes a mesh-dependent solution
 - Mesh selection method not obvious
 - Approach used in out-of-plane bending study used here
 - Select coarsest mesh giving a converged **elastic** solution (damage turned off)

- Seven notch-tip meshes were analyzed
- · 20 element tip was selected

Notch-tip mesh: Comparison to experiments

Layup (#plies / zero degree)	Experiment	8-Element Mesh, Error	20-Element Mesh, Error	32-Element Mesh, Error
40/50%	5.473	14.53%	9.96 %	47.52%
40/30%	5.708	33.50%	21.34%	30.06%
40/10%	4.101	74.87%	40.14%	38.19%
20/50%	1.795	-10.04%	-0.68%	25.45%
20/30%	1.531	28.33%	34.54%	82.93%
20/10%	1.259	33.17%	16.57%	64.00%

Comparison to experiments, 40-ply, 30% zero

Comparison to experiments, 40-ply, 10% zero, UP

Linear Region

2 Point of Max Load

Model

Comparison to experiments, 40-ply, 10% zero, DOWN

Linear Region

2. Point of Max Load

Model

- Conclusions / Future Work
 - Approach of using coarsest mesh to give converged elastic solution appears reasonable
 - Model predictions vs. Experiments
 - Model linear region stiffness equal or greater
 - Model failure load near-equal or greater
 - Model failure displacement less
 - Strain-fields appear to capture some major features
 - Part of 2012-13 project is to improve model predictions

- Out-of-plane shear: Experimental results
- Out-of-plane shear: Modeling results
- Helius MCT Evaluation results
- Out-of-plane bending, all-ninety and all-zero ply results

- Evaluate Helius:MCT as an alternative to Abaqus built-in composite damage capabilities
- Helius:MCT
 - Uses a material-model subroutine (UMAT) and deals well with material non-linearity.
 - No special features to deal with geometric non-linearity
 - For best results, one layer of solid elements per ply (element damage corresponds to ply damage)
 - However, one layer / ply led to convergence problems
 - Solution was to use continuum shell elements with multiple plies / element

- Comparison
 - Abaqus Built-in (Hashin)
 - One continuum element through thickness
 - Five equally spaced continuum elements thick
 - Five continuum elements w/ VCCT to model delamination
 - Abaqus w/ Helius:MCT
 - One continuum element through thickness
 - Five equally spaced continuum elements thick
 - Five continuum elements w/ CZ to model delamination

• Comparison results

Run Description	Maximum Moment [in-lbs/in]	Error (%)	Run Time [hrs]
Experimental	740	-	-
Abaqus, 1 el, no delamination	839.9	13.5	1:20
Abaqus, 5 el, no delamination	1027.4	38.8	8:49
Abaqus, 5 el, VCCT	770.8	4.2	74:17
Helius, 1 el, no delamination	725.5	-2.0	0:38
Helius, 5 el, no delamination	719.7	-2.7	2:32
Helius, 5 el, CZ	788.9	6.6	12:32

- Conclusions / Future Work
 - Comparison results: Promising!
 - Study will continue with this year's specimens.

- Out-of-plane shear: Experimental results
- Out-of-plane shear: Modeling results
- Helius MCT Evaluation results
- Out-of-plane bending, all-ninety and all-zero ply results

Out-of-plane bending, allninety and all-zero ply results

- Analyze the special cases of all-ninety-degree plies and all-zero-degree plies in out-of-plane bending
- Plan
 - 40 all-zero-degree ply layup
 - 40 all-ninety-degree ply layup
 - Compare to 40 / 30% zero-degree ply layup
 - Use Helius:MCT

Out-of-plane bending, allninety and all-zero ply results

- Results (max. moment at corresponding deflection)
 - All zero: 1114.5 in-lbs/in @ 1.26 inches
 - 40 / 30% zero-degree 839.9 in-lbs @ 2.18 inches
 - All ninety: None @ 4.1 inches

Out-of-plane bending, allninety and all-zero ply results

- Conclusions / Future Work
 - Lack of failure load for all-90 case limits usefulness
 - May repeat with out-of-plane shear case

