

Improving Adhesive Bonding of Composites Through Surface Characterization

(of Peel Ply Prepared Surfaces)

Brian D. Flinn Department of Materials Science and Engineering

Our work studies bonding by examination of **JMS**peel ply prepared composite surfaces.

- Peel Ply-Woven fabric
 - Typically thermoplastic polymer
 - Placed on surface during layup
- Cured with the part matrix resin infiltrates peel ply weave
- Removed just before bonding
- Ideally leaves rough, clean, chemically active surface
- Benefits:
 - straightforward
 - consistent
- If only they always worked!

Peel ply

Composite

Historically peel plies are a prime example of system specificity of composites.

- John Hart-Smith- Curse of the Nylon Peel Ply
- Bardis and Kedward showed peel ply was not an effective method for some resin systems-adhesion failure, low fracture energy.
- Previous research on carbon fiber reinforced epoxy prepreg, BMS8-276 (177° C; 350° F) cure showed
 - Polyester peel-ply prepared surfaces produced good bonds
 - Nylon peel-ply prepared surfaces did not bond well
 - Remnants of nylon peel-ply found on surface (SEM, XPS)
- This research:
 - Glass fiber epoxy prepregs: BMS8-79 (127° C; 250° F) cure
 - Carbon Fiber epoxy prepregs: BMS8-256 and Toray 3631 (177° C)
 - Nylon and polyester peel plies (dry and preimpregnated)
 - Various film adhesives

- Adhesive bond long term performance
 - Correlation of accelerated aging method to actual service
- Quantify service environment

 Load, temperature, moisture, solvents
- Make wettability work more quantitative/predictive
 Understand temperature effects
- Fundamental understanding of surfaces created and why

Improved fundamental and empirical understanding
 Quantifiable prebond litmus test

The Rapid Adhesion Test (RAT) is a quick, cheap test to assess composite bond adhesion.

- A modification of metal-to-metal peel test developed by Boeing.
- The backing adherend clamped to while the peeling adherend is removed
- -Qualitative Mode I test for bond quality
 - Adhesion Failure-Poor Bond

JMS

- Cohesive Failure-Strong Bond
- Intended for screening out poor adherendadhesive-surface prep combinations
- Failure modes correlate with DCB test with ~90% less cost and flow time

Cohesive failure (left) vs. Adhesion failure (right)

Wettability envelopes showed the difference in the prepared surfaces.

 Fluids inside the envelope will wet spontaneously

JMS

- Critical condition for bonding?
- Wettability envelopes a potential method to determine suitability of a surface for bonding
- Epoxy adhesives* on boundary for nylon prepared surfaces

* Literature values for aerospace epoxies

- Curves generated using WET program (M. Tuttle)

- 2 Peel Plies: Polyester 60001 and Nylon 52006
- 3 prepregs-250 °F cure
 - HexPly® F155
 - Yokohama G7781
 - Cytec MXB7701
- 6 adhesives-260 °F cure
 - 3M AF500; 3M AF163-2;
 - Henkel EA 9696; Henkel EA 9628
 - Cytec FM94; Cytec FMx 209
- Bond quality assessed by failure mode (RAT)
 - Adhesion (poor) vs. Cohesive (good)

Aerospace carbon fiber-epoxy prepregs

- UD Toray 3631 toughened hot melt epoxy with T-800 fiber
- Cytec-Cycom 970 toughened epoxy and plain weave 3K-70

Aerospace grade film adhesives

- Cytec Metal Bond 1515-3
- 3M AF 555

Peel plies

- Dry polyester Precision Fabrics 60001 Nat
- Dry nylon Precision Fabrics 52006/51789 Nat
- Epoxy-preimpregnated polyester Henkel EA-9895
- Epoxy-preimpregnated nylon Cytec MXM 7934/52006

Nylon peel ply (Precision code 51789-52006)

Adhesive	Hexcel 1581-F155	Yokohama F6986	Cytec Cycom MXB 7701/7781		
3M AF500	COHESIVE	COHESIVE	COHESIVE		
3M AF 163-2M	COHESIVE	COHESIVE	COHESIVE		
Cytec FM 94	COHESIVE	COHESIVE	COHESIVE		
Henkel Hysol EA 9696	COHESIVE	COHESIVE	COHESIVE		
Cytec FM x209	COHESIVE	COHESIVE	COHESIVE		
Henkel Hysol EA 9628	COHESIVE COHESIVE		COHESIVE		
Polyester peel ply (Precision 60001)					
3M AF500	ADHESION	ADHESION	ADHESION		
3M AF 163-2M	ADHESION	ADHESION	ADHESION		
Cytec FM 94	ADHESION		ADHESION		
Henkel Hysol EA 9696	ADHESION	ADHESION	ADHESION		
Cytec FM x209	MIXED	MIXED	MIXED		
Henkel Hysol EA 9628	ADHESION	ADHESION	ADHESION		

	PEEL PLY USED FOR SURFACE TREATMENT					
Substrate	PF60001	PF51789	Fiberglass-Epoxy	EA9895	Nylon-Epoxy	
Adhesive	Polyester	Nyion		РЕ-Ероху		
Cytec 970	MIXED	ADHESION	COHESIVE	COHESIVE	ADHESION	
MB1515-3						
Cytec 970	MIXED	MIXED	COHESIVE	COHESIVE	COHESIVE	
AF555						
Toray 3631	ADHESION	ADHESION	NA	COHESIVE	ADHESION	
MB1515-3						
Toray 3631	ADHESION	ADHESION	NA	COHESIVE	ADHESION	
AF555						
Toray 3900	COHESIVE	ADHESION	NA	NA	NA	
MB1515-3						
Toray 3900	COHESIVE	COHESIVE	NA	NA	NA	
AF555						

- SEM imaging was carried out on the prepreg surfaces both immediately subsequent to peel ply removal as well as after Mode I fracture by the rapid adhesion test
- The images below are those taken after peel ply removal; only the Cytec 970 resin system is imaged because the peel ply texture is the same for both the Cytec 970 and Toray 3631

Laminate surface after removal of nylon peel ply

Nylon from peel ply on surface before bonding?

The Joint Advanced Materials and Structures Center of Excellence

- XPS was carried out on all of the peel ply-prepared surfaces to determine composition
- The polyester-prepared surfaces demonstrated high oxygen content due to the C=O bonds within polyester fiber; the nylon-prepared surfaces demonstrated high nitrogen content due to the presence of amide C=N bonds in the nylon

•	Br detected in	EA9895 resin-	compatibility	issues	with substrate?
---	----------------	---------------	---------------	--------	-----------------

Substrate - Peel ply	C (At.%)	O (At.%)	N (At.%)	Si (At.%)	Br (At.%)	S (At.%)
Cytec 970 - PF60001	73.8	25.2	1.0	**	**	**
Cytec 970 - PF51789	76.1	12.4	11.5	**	**	**
Cytec 970 - Epoxy/nylon	77.5	12.9	9.6	**	**	**
Cytec 970 - EA9895	76.8	19.6	3.1	**	0.5	**
Toray 3631 - PF60001	70.5	25.9	1.6	1.3	**	0.6
Toray 3631 - PF51789	77.1	13.3	9.0	**	**	0.7
Toray 3631 - Epoxy/nylon	76.2	12.1	10.7	**	**	1.0
Toray 3631 - EA9895	79.0	18.3	1.2	**	1.5	**

Composite surface after removal of:

260 F cure GFRP

Cytec 970 (360F)

Toray 3900 (360 F)

Bond Quality Depends on:

- Peel Ply Material and Adhesive
 - Nylon : high toughness bonds, cohesive failure all adhesives
 - Polyester peel ply: low toughness, adhesion failure
 - One adhesive bonded to all surfaces
- Opposite Trend than BMS8-276 (350 F) system
 - Nylon bad, Polyester good
- The wetting envelopes generated for the various prepared surfaces gave no real insight into why polyester was inadequate.
 - Surface energy of polyester surfaces>nylon surfaces
- The SEM surface examination revealed a potential cause of the problem – the polyester peel ply is interacting with the matrix to leave tendrils of material, indicates contamination

350F Summary

- The Henkel EA-9895 peel ply-prepared surfaces performed well
 - Contained the adhesive compounds within the wetting envelopes;
 - Surfaces after peel ply removal exhibited fractured epoxy regions
 - No visible fiber remnants
- Surfaces from dry polyester peel ply contained the adhesives well within their wetting envelopes
 - Did fail in cohesive
- Cytec 970 / wet nylon peel ply / 3M AF 555 had cohesive failure
 - Adhesive was outside the boundaries of the wetting envelope
- Surfaces which had visible peel ply contamination when observed by SEM did not produce strong bonds

- A given peel ply surface preparation that works with one prepreg-adhesive system will not necessarily work with any other prepreg-adhesive system; each combination yields its own unique characteristics
- Henkel EA9895 epoxy-preimpregnated polyester peel ply produced high quality bonds in all of the systems investigated
- Surface wetting is a necessary but insufficient condition for the formation of strong adhesive bonds in the composites tested
- High O/C or N/C ratio's did not correlate to bond quality.

The Future

1) Degree of Cure before bonding

- Effect of Over Cured Substrate on surface energy and bonding characteristics
 - Local exotherms
 - Rework

J

- Effect of partial cure of prepregs on surface energy and bonding characteristics
 - If prepreg is not fully cured how does this effect:
 - Peel ply- resin interactions
 - Easy of peel ply removal
 - Surface to be bonded- are there uncrosslinked sites that can bond to adhesive
- Prepreg gets full cure during adhesive cure

- New systems (General aviation prepregs/peelplys/adhesives)
 - Toray 2500 series (interest from Toray -L. Cooke)
 - Paste Adhesives
 - Surface Preparation Parameters

- Further investigation of differences in 250 vs.
 350 cure prepreg/peel ply interactions (related to 1 and 2)
 - So far Nylon Peel ply works at 250, Polyester at 350
 - Why?
 - Will a 350 Polyester peel ply prepared surface bond with a 250 adhesive?

- To date surface characterization performed at ambient conditions. Does surface change substantially at High T &P?
- Temperature and Pressure effects on surface energy, prepreg/peel ply interactions and adhesive/substrate interactions

- Development of standard surface energy measurements for composite surfaces (peel ply, sanded, Grit blasted, Scarfed)
- Contact angle varies with
 - Peel ply texture
 - Fiber geometry
 - Roughness
- Other methods for surface energy
 - Inverse GC
 - Tenisometry
 - Other?

- Effect of time/environment (UV, etc.) on composite surfaces after surface preparation (peel ply, sanding)-i.e. how long can you wait to bond a surface after preparation
- Surface energy
- Composition- adsorbed species using XPS
- Bond Quality

Future Possibilities

- The main areas of interest for future work are:
- Effect of partial cure of prepregs on surface energy and bonding characteristics
- New systems (General aviation prepregs/peelplys/adhesives)-Toray
- Further investigation of differences in 250 vs. 350 cure prepreg/peel ply interactions (related to 1 and 2)
- Temperature and Pressure effects on surface energy, prepreg/peel ply interactions and adhesive/substrate interactions
- Development of standard surface energy measurements for composite surfaces (peel ply, sanded, Grit blasted, Scarfed)
- Effect of time/environment (UV) on composite surfaces after surface preparation (peel ply, sanding)-i.e. how long can you wait to bond a surface after preparation
- NEED TO PRIORITIZE- Your input is important

- Further dissemination and acceptance of quick, inexpensive bond quality test- RAT method
- Initial stages of prepreg-peel ply-adhesive compatibility data base
- Contribute to fundamental understanding necessary to develop inspection techniques to determine the suitability of peel ply surfaces for bonding

- Funding FAA JAMS-AMTAS
- Peter Van Voast & Will Grace at The Boeing Company
- Mark Tuttle for his technical input and "WET" software utility
- Material donations from Cytec-Cycom, Toray Composites America, Airtech International, Henkel, Richmond Aerospace, Yokahama and Precision Fabrics
- UW- MSE Undergraduates: Rockey Aye, Eric Brutke, Neil Golke, Dinda Padmasana