

Delamination/Disbond Arrest Features in Aircraft Composite Structures

Luke Richard and Kuen Y. Lin University of Washington AMTAS Fall Meeting November 12, 2014

Sponsored Project Information

- Principal Investigator:
 - Dr. Kuen Y. Lin, Aeronautics and Astronautics, UW
- Research Assistants: Luke Richard, Wenjing Liu, UW
- FAA Technical Monitor: Lynn Pham
- Other FAA Personnel: Curtis Davies, Larry Ilcewicz
- Industry Participants:
 - Boeing: Marc Piehl, Gerald Mabson, Eric Cregger, Matthew Dilligan, Caihua Cao, Eric Sager
 - Toray: Kenichi Yoshioka, Dongyeon Lee, Masahiro Hashimoto, Felix Nguyen
- Industry Sponsors: Toray and Boeing

Research Objectives

- Enhance accuracy of crack arrest capability predictions for varying laminate and fastener configurations
 - Develop understanding of crack propagation and arrest by multiple fasteners under static and fatigue loading
 - Develop knowledge of how crack propagation varies with different laminate configurations

Crack Arrest Mechanism by Fastener

Advanced Materials in Transport Aircraft Structure

Background

- Motivation and Key Issues
 - Delamination is a critical damage type for laminated and bonded composite structures
 - Bolted joint design methodology is inefficient
- Objective
 - To understand the arrest process of delamination/disbond arrest features, particularly in novel configurations
 - To develop analysis tools for design and optimization
- Approach
 - Perform FEM analyses in ABAQUS with VCCT
 - Conduct sensitivity studies on fastener effectiveness
 - Conduct coupon-level experiments using novel specimens

Two Fastener Experimental Work

- T800S/3900-2B unidirectional pre-preg tape
- BMS 9-17 surplus unidirectional pre-preg tape
- 0.25 Inch titanium fasteners
- (0/45/90/-45)_{3S}
- Load rate 0.1 mm/min
- Crack tip tracked visually
- 0.1 in Scale

2-Plate Two-Fastener Finite Element Model

- Fastener flexibility (H. Huth, 1986) $C = \left(\frac{t_1 + t_2}{2d}\right)^a \frac{b}{n} \left(\frac{1}{t_1 E_1} + \frac{1}{n t_2 E_2} + \frac{1}{2t_1 E_3} + \frac{1}{2n t_2 E_3}\right)$
 - Thickness $t_1 = t_2 = 0.18$ in., diameter d=0.25 in., $E_x = laminate$ stiffness
 - Single Lap, bolted graphite/epoxy joint, constants taken as; a=2/3, b=4.2, n=1
- Fastener joint stiffness $k_{slide} = \frac{1}{C}$, Fastener tensile stiffness $k_{clamp} = \frac{AE}{(t_1 + t_2)}$
- Fracture parameters, G_{IC}=1.6 lb/in, Nominal G_{IIC}=G_{IIIC}=14 lb/in Measured: 12 lb/in (BMS 8-276) 10 BMS 9-17)

• Power Law fracture criterion
$$\left(\frac{G_I}{G_{IC}}\right)^{\alpha} + \left(\frac{G_{II}}{G_{IIC}}\right)^{\beta} + \left(\frac{G_{III}}{G_{IIIC}}\right)^{\delta} \le 1$$

 $\alpha = \beta = \delta = 1$ linear mode mixture assumed

- · Fixed boundary condition similar to test; grips not modeled
- Friction coefficient assumed to be fixed value or zero

Clearance

- Typical ¹/₄ inch bolt clearance 0.007-0.016 in.
 - Previous single and multiple fastener research utilized zero clearance (tight fitting hole)
- Bolt clearance and fracture toughness varied
 - Fastener stiffness set as zero over ±0.007-0.016 inch span
 - Fracture toughness varied from 5 to 14 lb/in to capture two different material systems

Results

- Delamination Arrest Mechanism
 - Mode I suppression
 - Propagation load increases as $G_{IIC} > G_{IC}$
 - Fastener flexibility is a major driver of arrest
 - Clearance greatly influences arrest capability by delaying fastener engagement
 - Crack-face friction slows propagation
- Limitations
 - Delamination can steer around the fastener's grip
 - Friction is poorly understood

Two-Fastener Analysis of SERR vs. Crack Tip Location

Experimental vs. Analytical Results 0 Clearance

Co-Cured Vs. Secondary Bonded

- All Test results shown are for cocured structures
 - Delamination resistance is governed by matrix properties
 - Structural adhesives typically have higher fracture toughness
- Previously delaminated samples re-bonded
 - Hysol EA9309 structural adhesive
 - Chosen for advertised shear properties
 - Secondary bonded structures failed prior to crack propagation
 - Crack driven off bondline and into laminate
 - Effective Mode II fracture toughness increased

Current Tasks

- Further Develop Analysis for Multiple Fasteners
 - Develop multi-dimensional modeling capability
 - Accurately model propagation with varying levels of detail
 - Conduct sensitivity studies
 - Fracture toughness shifts curve vertically
 - Optimize fastener pitch and pattern
- Fatigue Studies
 - Two fastener quasi-static modeling demonstrated
 - Fatigue predictions and performance unverified
 - Establish hybrid bolted/bonded joint performance in fatigue
 - Develop predictive capability based on pristine fatigue properties

Fatigue Modeling

- Identical two dimensional model
 - Fatigue properties currently sourced from literature
 - Sinusoidal and triangular loading simulated
 - Zero and positive clearance simulated
 - Hole damage not currently modeled
- Dramatic fatigue life difference due to clearance
 - Consistent result both in tension-tension and tensioncompression loading
- Hole damage may be critical factor
 - Even 0.001 in clearance results in lower fatigue life

Fatigue Testing

- Fastener has no effect on high cycle fatigue
 - No crack propagation to suppress
- Fastener hole treatment has significant effect on low cycle fatigue
 - Crack arrest capability greatly reduced by the inclusion of clearance
 - Poorly drilled clearance holes performed better than well drilled clearance holes
 - Effective clearance reduced
- Hole damage may be critical factor
 - Not visible on tested samples

Fatigue Results

Work in Progress

- Evaluate fatigue performance
 - Establish Da/Dn curves of unfastened structure
 - Establish relation between unfastened and fastened performance
- Establish boundaries of arrest capability
 - Asymmetric laminates experience greater crack growth
 - Can non-uniform fastener patterns be more efficient
- Investigate alternative or supplementary arrest features
 - Fastener tensile strength is excessive for configuration
 - Clearance minimization is key
 - Secondary or co-bonding may increase effective fracture toughness

Future Work

- Predict fatigue performance
 - Develop predictive abilities based on fatigue performance of coupon testing
 - Understand critical differences between static and fatigue performance of bolted bonded/joints
 - Hole damage not visible in quasi-static testing
 - Use knowledge developed from quasi-static work to predict fatigue performance of varying layup
- Predict limitations of fastener arrest
 - Analytically determine damage scenarios where multifastener arrest features are insufficient for full crack arrest

Future Work

- Establish security of bond assisted joints
 - Demonstrate sufficient fastener quantity for debonds to be considered arrested
 - Reduce structural weight with load transfer through bondline as well as fasteners
- Develop alternative/supplementary arrest features
 - Can crack arrest fasteners be modified for improved arrest at lower weight?
 - Reduce/eliminate hole clearance without sacrificing manufacturability

Looking Forward

- Benefit to Aviation
 - Tackle a crucial weakness of laminate composite structures
 - Reduce risks (analysis, schedule/cost, re-design, etc.) associated with delamination/disbond mode of failure in large integrated structures
 - Enhance structural safety by building a methodology for designing fail-safe co-cured/bonded structures
- Future needs
 - Further fatigue testing to establish parameters
 - Initiation investigation of crack propagation through fastener arrays
 - Industry/regulatory agency inputs related to the application, design, and certification of this type of crack arrest feature

Question and comments are strongly encouraged.

Thank you.

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE