

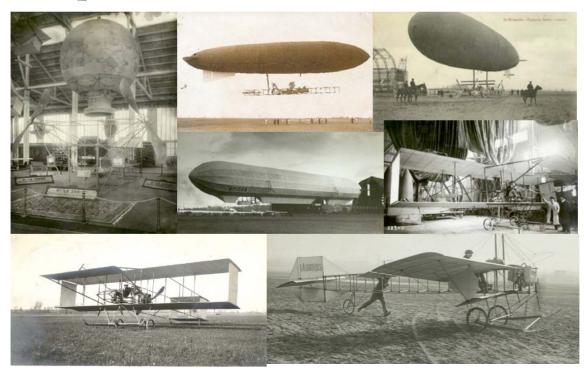
Resin Infusion Process

AMTAS Autumn 2005 Meeting October 13, 2005 University of Washington

Northwest Composites Inc. Marysville, WA

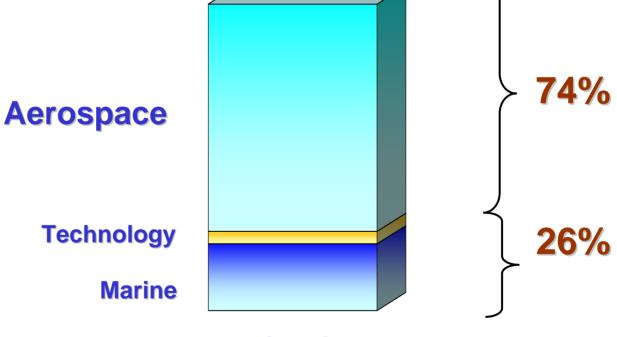
Recent Acquisition

- Mid July 2005 NWC became part of C&D Zodiac
- Individual companies have now integrated into one



About Zodiac

- Started in 1896
- Headquarters in Paris, France



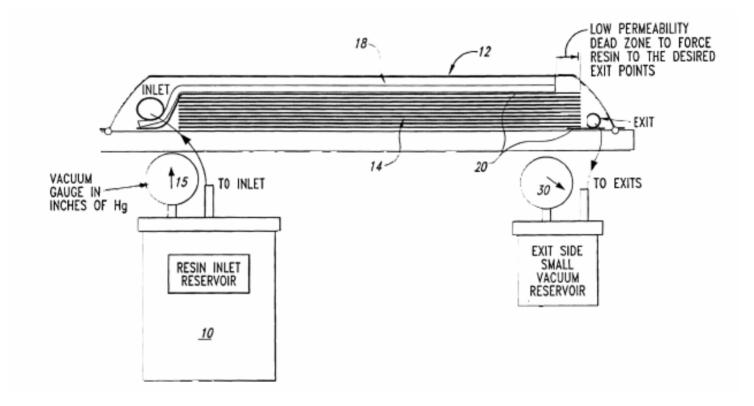
About Zodiac

• Much more than rubber boats

2004/05 Sales (Proforma including C&D)

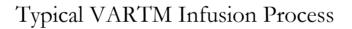
- NWC Product Development focusing on infusion process
- Infusion including VARTM process and film infusion
- Active versus Passive control of resin flow

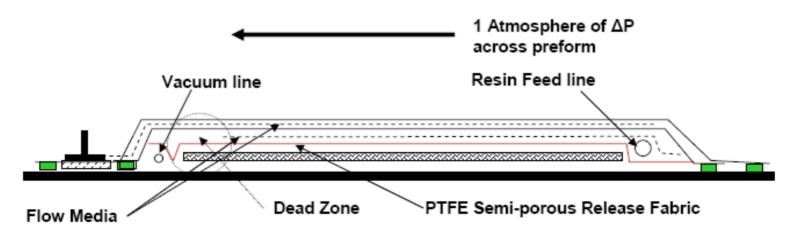
Active


- CAPRI Controlled Atmosphere Pressurize Resin Infusion
- RTM closed mold process
- RFI Resin Film Infusion autoclave cure

Active Control of VARTM resin flow

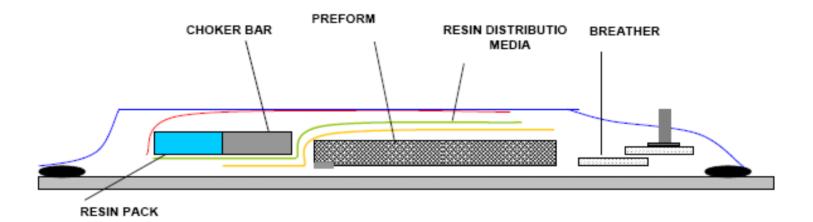
• Boeing CAPRI system (US Patent No. 5,772,950)





Passive control of VARTM resin flow

- 1. Bernoulli's Law Δh of resin and preform
- 2. Permeability of materials
- 3. Tool geometry
- 4. Control features choke bar, dead zone, etc



Passive control of resin flow with the choker bar

Typical Film Infusion Process

Computational Fluid Dynamic Modeling

- (CFD) of Infusion System
- 1. Passive infusion systems will push resin across preform using 1 ATM pressure
- 2. Preform may relax as resin flow front passes over preform
- 3. Resulting in loss of net compaction on preform and decrease fiber volume
- 4. May result preform displacement if large ΔP occurs
- 5. Resin constriction (choker bar, tooling) may be modeled

CFD Parameters

- 1. Define material permeability of materials (preform, release ply, infusion media)
- 2. Determine resin viscosity (temperature dependent)
- 3. Geometry considerations including tool design and other passive controls of resin flow

Geometry	Preform Material	Resin	Parting Film	Distribution Media	Passive Control Mechanism
Flat Panel	Carbon Fiber Braid (0, ± 60°)	Room Temp Liquid Resin	Permeable TFP	Nylon Bi- planar	Baseline
C-channel Beam	Carbon Fiber Braid (0, ± 60°)	Room Temp Liquid Resin	Permeable TFP	Nylon Bi- planar	Tooling Radius
Flat Panel	Carbon Fiber Braid (0, ± 60°)	B-staged filmed resin	Permeable TFP	Nylon Bi- planar	Baseline (autoclave cure)
C-channel Beam	Carbon Fiber Braid (0, ± 60°)	B-staged filmed resin	Permeable TFP	Nylon Bi- planar	Baseline (autoclave cure)

Experimental Measurements

- 1. CFD models will compare preform pressure (time dependent) and part thickness with actual data
- 2. Relationship will be developed between CFD preform pressure / part thickness and actual part thickness
- 3. Fiber volumes will be able to be predicted through part thickness correlation

Continued Studies

1. Further studies may include material variation, parting film/distribution media and cure cycle (resin viscosity) variation.