

World Class. Face to Face.

Maximum Strain as a General First Ply Failure Criterion in Laminated Composites

Lloyd Smith AMTAS 4-23-09

Background

- Composite failure criteria tend to be:
 - too simple (often do not agree with experiment)
 - too complex (can be easier to build and test)
 - More multi-axial data is needed
- Maximum Strain (stress) Failure Criterion
 - Often used for fiber failure
 - Not applied to matrix failure
 - Sighted data is from lamina

Strength Properties

■Non-linear shear response decoupled from damage by loading-unloading of $[(\pm 45)_3]_s$

Two Examples

- Some data suggest Maximum Strain may apply to matrix failure
- Examples
 - Pressure vessel with bias fiber orientation
 - Open hole tension test coupon

Pressure Vessel

Failure Criteria Results

- Maximum stress and strain
 - Optimum angle minimizes matrix strain
- Tsai-Hill
 - Does not identify failure mode
 - Optimum angle found by maximizing load factor

Results of Pressure Vessel Tests

Transverse Failure Mode

Hoop Biaxial Axial

Open Hole Tension

Laminate	Layup
BL	[(45/90/-45/0)2]s
А	[(54/90/-54/0)2]s
В	[(45/51/-45/0)2]s
С	[(45/0/-45/90)2]s
D	[(45/90/-45/57)2]s
Е	[(54/54/-54/0)2]s
F	[(45/-45/90/0)2]s
G	[(21/90/-21/0)2]s
Н	[(45/0/-45/0)2]s
I	[(±45)4]s
J	[0]16

Strain State From FEA

Results

- Interactive criteria tend to be conservative
- Limit criteria correlate with failure for transverse and shear failure

Failure Modes

Laminate A Transverse

Laminate B Shear

Next Steps

- Biaxial results involved 2:1 stress ratio
 - Examine full failure envelope (normal and shear)
 - Consider notch under multi-axial stress
- Notched results involved tension and shear
 - Consider notched compression and flexure
- Evaluate brittle and toughened matrix systems
- Apply maximum strain to damage evolution and ultimate strength prediction