

Durability of Adhesively Bonded Aerospace Structures

Dr. Lloyd Smith Harrison Scarborough David Lemme Sayed Hafiz Preetam Mohapatra

September 12th, 2014

Outline

- **1.** Fatigue
- 2. Ratcheting
- 3. Environment
- 4. Toughness (JCATI)

Fatigue Test Matrix

Wide Area Lap Shear

Double Cantilever Beam, EA9696

G_{1c}

	BSS 7208	ASTM D3433
1st Crack	34.04 lb/in	21.59 lb/in
2nd Crack	30.72 lb/in	21.44 lb/in
3rd Crack	*	*
4th Crack	28.80 lb/in	22.02 lb/in
5th Crack	27.90 lb/in	21.94 lb/in

* Peak load wasn't captured

G_{1a}

	BSS 7208	ASTM D3433
1st Crack	23.25 lb/in	16.23 lb/in
2nd Crack	21.33 lb/in	15.68 lb/in
3rd Crack	21.33 lb/in	16.31 lb/in
4th Crack	21.02 lb/in	16.52 lb/in
5th Crack	21.03 lb/in	16.95 lb/in

182,9um

Scarf Stresses

Scarf Fixture

Scarf Joint

Status:

- Anodizing and priming complete and waiting for shipping
- Curing fixture has been developed
- Coupon dimensions have been finalized

EA9696

Challenges

• Voids in paste adhesives

Next Steps

- Develop process for paste adhesive bonding
- Finish fabrication of WALS, scarf and DCB coupons
- Fabricate and test coupons

Study the effects of creep, relaxation, and ratcheting in adhesives.

Ratcheting

Inputs:

- Mean Stress
- Stress Amplitude
- Strain Rate
- Peak Hold Time

Outputs:

- Cycles to Failure
- Strain at n Cycles

Fig. 3. Uniaxial ratchetting test of ACF: (a) stress control diagram; (b) stress-strain relationship; (c) ratchetting strain evolution; (d) ratchetting strain rate evolution.

Lin, Y.C., Xiao-Min Chen, and Jun Zhang. "Uniaxial ratchetting behavior of anisotropic conductive adhesive film under cyclic tension." *Elsevier* (2010). Print.

Adhesive: Hitachi AC-8955YW-23

Viscoelasticity Test Matrix

	Creep	Relaxation	Ratcheting
Neat Resin	5 stress levels 4 durations 1 coupons per state 20 coupons total	5 strain levels 4 durations 1 coupons per state 20 coupons total	5 mean stresses 5 stress amplitudes 1 strain rates 3 coupons per state 75 coupons total
Wide Area Lap Shear	5 stress levels 4 durations 1 coupons per state 20 coupons total	5 strain levels 4 durations 1 coupons per state 20 coupons total	5 mean stresses 5 stress amplitudes 1 strain rates 3 coupons per state 75 coupons total
Scarf Joint	5 stress levels 4 durations 1 coupons per state 20 coupons total	5 strain levels 4 durations 1 coupons per state 20 coupons total	5 mean stresses 5 stress amplitudes 1 strain rates 3 coupons per state 75 coupons total

Neat Resin Creep Test

6" x 1" x 0.068" Coupons

Creep Model

Creep: $\epsilon(t) = \sigma \downarrow 0 \ [D \downarrow 0 + D \downarrow 1 \ t \uparrow n]$

Recovery: $\epsilon(t) = \sigma \downarrow 0 \ D \downarrow 1 \ [t \uparrow n - (t - t \downarrow 0) \uparrow n]$

EA9696, *σ*↓0 =3,250 *psi*, *t*↓0 =1,000 *sec*

 $D \downarrow 0 = 3.31$ $D \downarrow 1 = 0.25$ n = 0.14

Data Model

Creep Test Challenges

Next Steps

- Develop method to measure quasi-static transverse strain in neat resin coupons
- Viscoelastic characterization of EA9696 and FM377
- Develop method to measure cyclic strain of neat resin coupons
- Investigate environments leading to ratcheting behavior

Environmental Effects on Adhesive Fatigue

- Adhesives lose strength and fatigue resistance in hostile environments.
- Changes threshold stress and crack growth rate.
- Temperature tends to have larger effect on crack growth rate than the threshold stress.
- Humidity tends to affect the threshold stress and crack growth rate.
- Temperature and humidity influence failure modes.

Diffusivity constant

• EA 9696

- 0.008 inch thickness
- immersed in water
- 70 F, D = 1.8x10⁻¹⁰ in²/s
- 150 F, D= 3.2x10⁻¹⁰ in²/s

Scope of Work

Adhesives

EA 9696

FM 300-2

Coupons

Double cantilever beam

Single lap shear

Scarf

Temperature
-5°C
30°C
65°C
100°C

Humidity
30%
60%
100%

Next Steps

- Complete moisture diffusion studies
- Determine the effect of temperature on adhesive toughness
- Fabricate scarf coupons
- Compare the roll of temperature and adhesive on toughness in fatigue

Effect of toughness on adhesive fatigue (JCATI)

- Compare fatigue response of joints with varying toughness
 - Through adhesive properties
 - -EA9696
 - -FM377
 - Through adhesive thickness

Adhesive Isotropy

FM377

300000 E/2*(1+v) from tensile exp 250000 experimental G 200000 Modulus (psi) 150000 100000 50000 0 0.02 0.04 0.06 0.1 0.08 0 Strain 0.5 0 0.005 0.01 0.015 axial strain

EA9696

Bond toughness increases with bondline thickness

- FEA simulation of Wide Area Lap Shear specimens
- High ductile sustains higher load
- Low ductile: lower load
- Both adhesives show longer elongation with thicker bonds

Next steps

- Complete adhesive isotropy study
- Fabricate coupons with varying thickness and adhesive toughness
- Compare the roll of joint toughness (from adhesive and adhesive thickness) on fatigue