

Improving Adhesive Bonding of Composites Through Surface Characterization

October 31, 2012 Ashley Tracey, Elise Santa Maria, Brian D. Flinn University of Washington

Improving Adhesive Bonding of Composites Through Surface Characterization

- Motivation and Key Issues
 - Most important step for bonding is SURFACE PREPARATION!!
 - Inspect the surface prior to bonding to ensure proper surface prep
- Objective
 - Develop quality assurance (QA) techniques for surface prep
- Approach
 - Investigate surface preps, process variables and examine effect of measurements on bonding surface

FAA Sponsored Project Information

- Principal Investigators & Researchers
 - Brian D. Flinn (PI)
 - Ashley Tracey (PhD student, UW-MSE)
 - Elise Santa Maria (undergraduate, UW-MSE)
- FAA Technical Monitor
 - David Westlund
- Other FAA Personnel Involved
 - Larry Ilcewicz
- Industry Participation
 - Toray Composites
 - Precision Fabrics, Richmond Aerospace & Airtech International
 - The Boeing Company (Marc Piehl, Kay Blohowiak, Peter VanVoast, William Grace, Tony Belcher, Liz Castro)

2011-2012 Statement of Work

	Surface Characterization/QA Technique				
	Contac	t Angle	FTIR		
	Goniometer	Surface Analyst	DATR	Diffuse Reflectance	
Cure Temp and Dwell Time	 ✓ 	 ✓ 	In progress	In progress	
Peel Ply Prep	 ✓ 	 ✓ 	 ✓ 	✓	
Si Contaminants	 ✓ 	 ✓ 	🖌 (Boeing)		
Peel Ply Orientation	~	✓ No effect	N/A	In progress	
Peel Ply + Abrasion	 ✓ 		In progress	In progress	
Scarfed Surfaces/Repair	In progress	In progress	In progress	In progress	
Effect of Measurement on Bonding Surface	In progress	TBD	TBD	N/A	

work completed

Recent Progress

- Peel ply + abrasion
 - Motivation: examine surfaces prior to bonding to ensure removal of peel ply texture
 - Application: bonding with paste adhesives
 - Variables: peel ply type before abrasion, directional vs. random abrasion, amount of peel ply removed
 - Diffuse reflectance FTIR can detect proper vs. improper abrasion to remove peel ply surface
 - Correlate to bond quality?

PC-2 (0%)

Recent Progress

- Scarfed surfaces/repair surfaces
 - Motivation: examine repair surfaces prior to bonding to ensure proper abrasion
 - Variables: reinforcement fiber orientation, fiber type, resin type, fiber arrangement (tape vs. weave)
 - Contact angle (CA) data collected analysis in progress
- Effect of CA fluid measurement on bond quality
 - Motivation: does measurement affect bonding surface?
 - Bond quality of intentionally contaminated samples

Surface Energy to Examine Surfaces

- Adhesive must wet substrate controlled by surface energy
- Surface energy = measure of energy associated with unsatisfied bonds at the surface [free energy/unit area]
- CAs used to measure surface energy

- Historically: water break test for metal bond QA, not sufficient for composites – esp. peel ply material
 - Need multiple fluids to determine surface energy, wettability envelopes

Contact Angle to Detect Surface Prep

- CA can detect surface prep and silicone contamination
 - Wettability envelopes: 2D representation of surface energy

Need to understand how fluid affects bonding surface

Investigate effect of contact angle fluid contamination on bond quality

- Contaminate CFRP surfaces with contact angle fluid followed by use of one of below methods:
 - Dry wipe
 - Acetone wipe
 - Air dry (in fume hood)
- Fabricate bonded specimens (bond within 4 hours)
 - Backing-Rapid Adhesion Test (B-RAT)/Climbing Drum Peel (CDP) Test
 - Failure mode
 - Double Cantilever Beam (DCB) Test
 - Mode I strain energy release rate (G_{IC})

Materials and Process

- Toray 3900/T800 unidirectional laminates
 Autoclave cure (350 °F, 89 psi)
- Peel ply surface prep
 - Precision Fabric Group 60001 polyester peel ply
- Contact angle fluid contamination
 - Fluids: DI water, ethylene glycol (EG), glycerol (Gly), diiodomethane (DIM)
 - BMS8-15 aerospace wipers
 - Application and removal of contamination

Materials and Process

- Secondary Bonding
 - B-RAT/CDP specimens
 - 3M AF 555M film adhesive
 - 0.02" phosphate acid anodized AI
 - Autoclave cure (350 °F, 45 psi)
 - DCB specimens
 - 3M AF 555M film adhesive
 - Autoclave cure (350 °F, 89 psi)

Climbing Drum Peel Test

- Bonded panels cut into (3) 1" x 13" specimens
- Test per ASTM D1781

COP/B-RAT Failure Modes

Control	DI Water		DIM		Gly		EG	
於斯羅	AI	CFRP	AI	CFRP	AI	CFRP	AI	CFRP
Air Dry	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1							
Dry Wipe								
Acetone Wipe								

All cohesive failure within adhesive

CDP/B-RAT Observations

- Visual: cohesive failure in the adhesive
 Desired failure mode
- Results suggest:
 - Failure mode not influenced by CA fluid contamination
 - CDP/B-RAT not sensitive to CA fluid contamination
 - Confirm results with DCB test?

DCB Test

- Bonded panels cut into (5) ¹/₂" x 13" specimens
- Used area method
 - E: area of curve
 - A: crack length
 - B: specimen width

DCB Failure Modes

Control	DI Water +	DI Water +	DI Water +	
	Air Dry	Dry Wipe	Acetone Wipe	

All mixed failure modes: cohesive within adhesive and interlaminar

DCB Mode I Strain Energy Release Rate

 Results to date: control and DI water contaminated samples

- DCBs with gly, EG, DIM contamination?

DCB Observations

- Visual: mixed failure modes → cohesive within adhesive + interlaminar
 - Desired failure modes
- No significant difference in G_{IC} values for DI water contaminated samples and control samples
- No degradation in bond quality found by DCB $(G_{IC} \text{ or failure mode})$ for DI water contamination

- Contact angle used to measure bonding surfaces → effect of measurement on surface?
 - CDP/B-RAT \rightarrow no degradation in failure mode
 - DCB \rightarrow no degradation in G_{IC} or failure mode for DI water contaminated samples
 - Need to examine other CA fluid contaminations, other systems (composite, surface prep, adhesive)

Bond Quality	Contact Angle Fluid Contamination				
Test	DI Water	DIM	EG	Gly	
CDP/B-RAT	1	✓	1	1	
DCB	s	TBD	TBD	TBD	

- Contact angle used to measure bonding surfaces → effect of measurement on surface?
 - CDP/B-RAT \rightarrow no degradation in failure mode
 - DCB \rightarrow no degradation in G_{IC} or failure mode for DI water contaminated samples
 - Need to examine other CA fluid contaminations, other systems (composite, surface prep, adhesive)

Bond Quality Test	Contact Angle Fluid Contamination				
	DI Water	DIM	EG	Gly	
CDP/B-RAT	1	✓	✓	1	
DCB	s	TBD	TBD	TBD	

Contact angle is potential QA method

Looking Forward

- Benefit to Aviation
 - Guide development of QA methods for surface prep.
 - Greater confidence in adhesive bonds
- Future needs
 - Application to other composite/surface prep./adhesive systems (repair, paste adhesive, etc.)
 - Model to guide bonding based on characterization, surface prep. and material properties
 - QA methods to ensure proper surface for bonding

Acknowledgements

- FAA, JAMS, AMTAS JMS
- Boeing Company
 - Marc Piehl, Kay Blohowiak, Will Grace, Pete VanVoast, Tony Belcher, Liz Castro, Paul Vahey, Paul Shelly, Greg Werner
- Precision Fabric Group
- Richmond Aircraft Products
- Airtech International
- UW MSE

UNIVERSITY of WASHINGTON

ENCE & ENGINEERING

A Center of Excellence

Thank you

Questions and comments welcome

