

# Certification of Discontinuous Composite Material Forms for Aircraft Structures

presented by

Mark Tuttle Dept Mechanical Engineering University of Washington



- <u>Objective</u>: Simplify certification of DFC aircraft parts
- <u>Technical Approach</u>: HexMC (a DFC being used on the B787) selected as a model material. For this material, perform:
  - Experimental studies of HexMC mechanical behaviors, starting with simple coupon-level specimens and progressing towards "complex" parts
  - Study effects of processing (e.g., impact of material flow during molding on stiffness and strength)
  - Develop stochastic modeling approaches
  - Compare measurements with analytical-numerical predictions



Certification of Discontinuous Composite Material Forms for Aircraft Structures

Principal Investigators & Researchers (UW):

- PIs: Mark Tuttle and Paolo Feraboli
- Grad Students: Tory Shifman (MSME `11), Marco Ciccu, Bonnie Wade, Brian Head
- FAA Technical Monitor
  - Curtis Davies
- Other FAA Personnel Involved
  - Larry Ilcewicz

Industry Participation

- Boeing: (primarily ) Bill Avery
- Hexcel: (primarily) Bruno Boursier and David Barr

#### Certification of Discontinuous Composite Material Forms Advanced Materials in Transport Aircraft Structures

Topics of earlier papers/presentations

 HexMC coupon tests (e.g., UNT, OHT, UNC, OHC); properties exhibit relatively high levels of scatter; HexMC is notch insensitive

Feraboli et al: (a) J. Composite Materials, Vol 42, No 19

(b) J. Reinf. Plastics and Composites, Vol 28, No 10

(c) Composites Part A, Vol 40

 "High-flow" and "ply-drop" panel tests: material flow causes modest chip/fiber alignment (optical microscopy) and measureable change in stiffness and strength (coupon tests)

Tuttle/Shifman: JAMS '09 & '10, AMTAS Fall '09 and Spr '10

- FEM modeling of stiffness/strength via stochastic laminate analogy Feraboli/Ciccu: JAMS '10 & '11, AMTAS Fall '10
- Measurement/prediction of elastic bending stiffness of HexMC angle beams with non-symmetric cross-sections Tuttle/Shifman: JAMS '11, AMTAS Fall '10

#### (Slides/results available on AMTAS website)

#### Certification of Discontinuous Composite Material Forms Advanced Materials in Transport Aircraft Structures

#### Activities during past 12 months:

• Tuttle/Shifman/Head:

HexMC angle beam tests

- Completed elastic bending tests (54 tests at 6 beam orientations)
- Completed bending tests to failure (15 tests at 1 beam orientation)
- Preliminary FEM analyses of angle beams (ANSYS)
- Developed facility and instrumentation to test HexMC intercostals (intercostal tests/analyses to be performed during 2011-12)
- Feraboli/Ciccu/Wade:
  - Preliminary FEM analyses of angle beams using stochastic laminate analogy (NASTRAN)
  - Open-hole tension tests with
    - Varied d/w ratios
    - Use of DIC to measure variations in strain concentration field near hole



Focus of this presentation:

- I. HexMC Angle Beams:
  - Summary of elastic bending test results
  - Summary bending tests to failure (15 tests at 1 beam orientation)
  - Preliminary FEM analyses of angle beams
- II. Description of HexMC intercostal test facility and instrumentation



## HexMC Angles

#### Compression molded by Hexcel

- 2.5 x 43 mm ("Small") (0.097 x 1.7 in )
- 4.8 x 64 mm ("Medium") (0.188 x 2.5 in )
- 4.8 x 89 mm ("Large") (0.188 x 3.5 in)

After receipt all beams were machined to 36 cm (14 in) length at the UW





- A total of 8 strain gages bonded at 2 cross sections for all specimens
- 1 inch gage length gages were used to obtain a nominal axial strain measurement





# **JAS** Bending Test Fixture

#### All beams tested in 4-point bending





#### Elastic Bending Tests Stiffnesses Measured in 6 Orientations



(3 beam sizes) x (3 replicate tests) x (6 orientations) = 54 tests



To obtain a quantitative comparison with theory:

- Slope of strain vs load ( $\mu\epsilon/P$ ) obtained for each gage using linear regression
- Values of measured and predicted slopes (με/P) were plotted against distance d from predicted neutral axis for each gage



## **Typical Measurements** *Large beams at -135° (3 replicate tests)*



Prediction based on

*E* = 6.38 Msi

as reported by Feraboli et al, Composites:Part A (2009). Note: they report a CV=19%  $E = 6.38 \pm 1.21$  Msi

# **AS** Measurement vs Prediction 3 replicate large beams at 6 orientations

 $\theta = 0^{\circ}$ -Predicted Specimen L1 Specimen L2 Specimen L3 1.00E-06 Strain/Load (in/in-lbf) 5 00E-07 0.00E+00 -2 -1 2 5 00E-07 1.00E-00 1 50F-06 Distance From Neutral Axis (in)  $\theta = 180^{\circ}$ -Predicted Specimen L1 Specimen L2 Specimen L3 1 50E-0 1.00E-06 Strain/load (in/in-lbf) 5.00E-07 0.00E+00 -2 1 2 5.00E-01 1 00E-06 -1 50E-06 Distance from Neutral Axis (in)  $\theta = 90^{\circ}$ -Predicted Specimen L1 Specimen L2 Specimen L3 0.000002 0.0000015 Strain/load (in/in-lbf) 000001 0004 -0.5 0.5 1 -5E-07 0 000001 -1 5E-06 -0 000002 Distance from Neutral Axis (in)

Advanced Materials in Transport Aircraft Structures

A Center of Excellence



# **S** Measurement vs Prediction 3 replicate medium beams at 6 orientations

 $\theta = 0^{\circ}$  Predicted 
Specimen M1 
Specimen M2
Specimen M3 50F-00 2 00E-06 Strain/load (in/in-lbf) 50F-06 -1.50E-06 -2 00E-06 Distance From Neutral Axis (in)  $\theta = 180^{\circ}$ -Predicted Specimen M1 Specimen M2 Specimen M3 2 00E-06 1.50E-00 Strain/load (in/in-lbf) 1 00E 0 5 00E-07 0.00E+00 -1.5 =0.5 0.5 1.5 1 50E-06 2.00E-06 -2.50E-06 Distance From Neutral Axis (in)  $\theta = 90^{\circ}$ — Predicted Specimen M1 Specimen M2 Specimen M3 4.00E-06 3 00E-06 Strain/load (in/in-lbf) 2 00F-06 0 00E+00 -0.4 0.4 -0.8 -0.6 -0.2 0.6 08 -2.00E-06 3-00E-06 Distance From Neutral Axis (in)

Advanced Materials in Transport Aircraft Structures

A Center of Excellence









Note: one small beam (specifically, specimen S1) had significantly higher errors than all other beam specimens



## Best Fit of Elastic Modulus

- An optimization scheme was developed to identify the value of *E* that resulted in the best fit to the measured data
- The best fit modulus was subsequently compared to values measured during coupon tests, as reported by Feraboli et al in 2009
- Basic function: search for value of *E* that minimizes:

$$\left\{ \left(\frac{\varepsilon}{P}\right)^{meas} - \left(\frac{\varepsilon}{P}\right)^{pred} \right\}^2$$



## Best Fit of Elastic Modulus 3 "types" of best fit

- Based on 8 strain gage measurements of individual beam at single orientation:
- Based on 8 strain gage measurements of individual beam at all 6 orientations:
- Based on 8 strain gage measurements of individual beam at 6 orientations, using 3 replicate beams:





## Best Fit of Elastic Modulus 3 types of "best fit"

| Specimen                             | Best Fit Elastic Modulus (Msi) |       |       |       |       |       |              |
|--------------------------------------|--------------------------------|-------|-------|-------|-------|-------|--------------|
|                                      | Beam Orientation               |       |       |       |       |       |              |
|                                      | 0°                             | -45°  | 90°   | -90°  | -135° | 180°  | All          |
|                                      |                                |       |       |       |       |       | Orientations |
| S1                                   | 12.10                          | 11.20 | 11.50 | 11.80 | 12.70 | 12.30 | 11.80        |
| S2                                   | 6.52                           | 6.14  | 5.83  | 6.99  | 6.42  | 6.46  | 6.35         |
| S3                                   | 6.86                           | 6.17  | 5.64  | 5.72  | 6.37  | 6.25  | 6.01         |
| All small beams, all orientations    |                                |       |       |       |       |       | 7.49         |
| Beams S2 & S3 only, all orientations |                                |       |       |       |       |       | 6.16         |
| M1                                   | 5.76                           | 5.66  | 5.89  | 6.10  | 6.61  | 5.67  | 6.00         |
| M2                                   | 6.27                           | 5.66  | 6.70  | 6.70  | 7.34  | 6.30  | 6.58         |
| M3                                   | 7.25                           | 6.44  | 7.08  | 7.09  | 7.24  | 7.23  | 7.05         |
| All medium beams, all orientations   |                                |       |       |       |       |       | 6.52         |
| L1                                   | 5.27                           | 6.30  | 5.53  | 5.59  | 5.24  | 5.04  | 5.51         |
| L2                                   | 6.36                           | 6.48  | 6.59  | 6.45  | 6.37  | 5.86  | 6.42         |
| L3                                   | 6.42                           | 6.60  | 6.70  | 6.56  | 6.44  | 5.92  | 6.52         |
| All large beams, all orientations    |                                |       |       |       |       |       | 6.07         |

Specimen S1 was an "outlier"



### Best Fit of Elastic Modulus Comparison to values from coupon tests





Elastic bending stiffnesses of HexMC beams were reasonably well-predicted by treating HexMC as an isotropic material

Scatter in best fit modulus measurements inferred from beam bending tests comparable to scatter inferred from coupon tests



## Bending Tests to Failure

- Beam oriented at 180° in all cases
- Applied loading (bending moment) increased until failure occurred
- Test conducted using constant crosshead rate (0.05 in/min)





## Bending Tests to Failure Specimen L2

Transport Aircraft Structures





## Bending Tests to Failure Specimen L2

Transport Aircraft Structures







## Bending Tests to Failure 5 Replicate Large Specimen Tests





## Bending Tests to Failure 5 Replicate Large Specimen Tests





## Bending Tests to Failure 5 Replicate Small Specimen Tests





## Bending Tests to Failure 6 Replicate Medium Specimen Tests





## Bending Tests to Failure Summary observations...

- The large and small beams exhibited a pronounced buckling/crippling behavior well before final fracture. Final fracture was a post-buckling *bending* failure of compressive flange.
- For the medium beam the bending moment necessary to cause buckling was nearly equal to the bending moment necessary to cause tensile/ compression fracture of the flanges; for the 6 medium beams tested to failure:
  - Three failed prior to significant buckling behavior
  - Three failed shortly after buckling initiated



## Bending Tests to Failure FEA Analyses

- Tory Shifman performed preliminary analysis using ANSYS
- Brian Head will expand FEA analyses for all beam sizes and for varying E's using NASTRAN







 Based on experimental observations, it is hypothesized that for modulus values ranging from

> 5.10 Msi  $\leq E \leq$  7.66 Msi (i.e., for  $E = E_{avg} \pm$  Std Dev)

the NASTRAN analyses will show:

- Large and Small beams: buckling/crippling predicted to occur prior to reaching bending moment levels necessary to cause failure stress/strain levels
- Medium beams: buckling condition and failure stress levels are reached at "about" the same bending moment level



- HexMC intercostals are stiffeners used near the door structures in the B787 fuselage
- In the UW tests intercostals will be loaded as cantilever beams







## Intercostal Test Frame Designed at built at the UW







## Intercostal Test Frame Designed at built at the UW





## Intercostal Test Frame Designed at built at the UW





## Intercostal Testing and Analysis

- Testing will begin during November; strains will be measured using both
  - 1-in strain gages
  - Digital Image Correlation
- FEA analyses will be performed using NASTRAN
- Tests and analyses expected to be completed by Spring 2012; results will be presented at
  - 2012 JAMS meeting
  - 2102 fall AMTAS meeting



# Thank you for your attention!

# **Comments or Questions?**