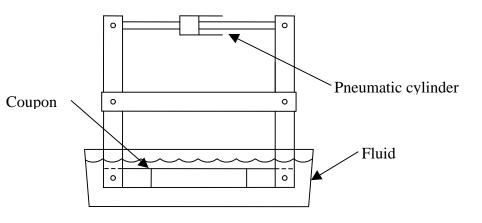
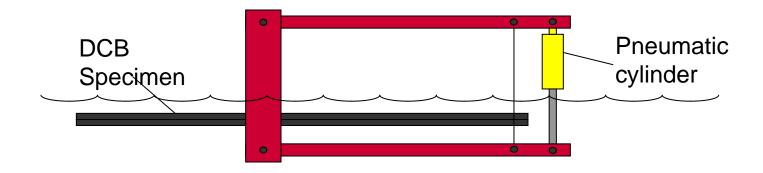


Accelerated
Degradation of
Composites and
Their Adhesives

Lloyd Smith
School of Mechanical and
Materials Engineering



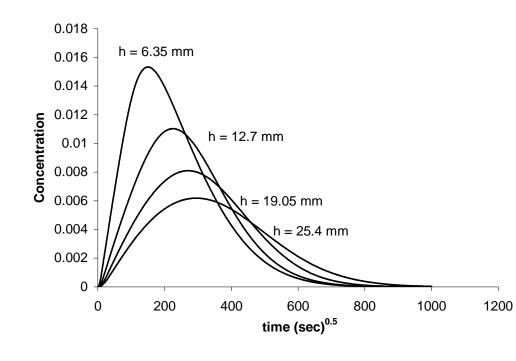

Degradation Observations

- Challenges
 - Slow rate effects (diffusion, creep, reaction)
 - Complex mechanisms
 - Components of exposure can interact
- Approach
 - Combine extreme exposure components
 - Failure surface directly contacts solvent (DCB)
- Need
 - Relate accelerated test duration to field exposure

Methods

Potential Aims

- Consider aggressive environments
 - MEK, sulfuric acid, hydrochloric acid, nitric acid
 - Adhesives and/or composites
 - Measurable degradation within ~6 months
- How does accelerated crack growth relate to longterm degradation?
 - Contribution of environmental components
 - General or material/environment specific?


Potential Aims

Interaction of diffusion and degradation

$$-\frac{d[C]}{dt} = k[C] \qquad \frac{\partial C}{\partial t} = D \cdot \frac{\partial^2 C}{\partial z^2}$$

$$C(t,z) = \int_0^t C_o e^{-k(t-\tau)} \cdot \left[\frac{dC}{d\tau} \right] \cdot d\tau$$

$$\overline{C}(t) = \frac{1}{h} \int_0^h C(t,z) \cdot dz$$

