

Variable Geometry Jet Nozzle Using Shape Memory Alloy Actuators

F. Tad Calkins Boeing Commercial Airplanes, Aeroacoustics

James H. Mabe Boeing Phantom Works, Flight Sciences

<u>frederick.t.calkins@boeing.com</u> – (425) 237-2831 James.h.mabe@boeing.com - (206) 544-5048

BOEING is a trademark of Boeing Management Company. Copyright © 2007 Boeing. All rights reserved.

Morphing Overview

Boeing Commercial Airplanes | Aeroacoustics

- Morphing Technologies increase a system's performance by manipulating characteristics to better match the system state to the operating conditions (environment and task)
- Aerospace applications
 - Landing gear
 - Flaps
 - Swing wing F-14, B1B
 - Concorde nose tilt
 - V22 Rotors rotate down
 - Mission Adaptive Wing
 - Active Aeroelastic Wing

Flaps

Morphing Aerostructures

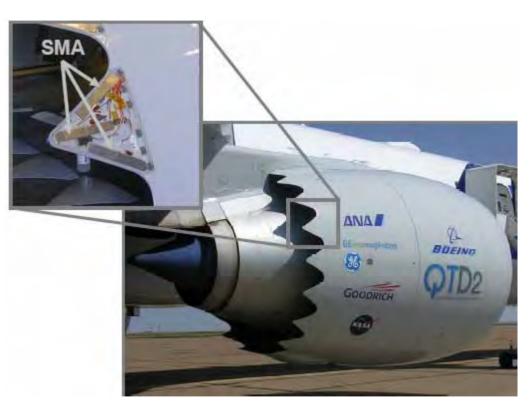
Boeing Commercial Airplanes | Aeroacoustics

Current "morphing" has disadvantages

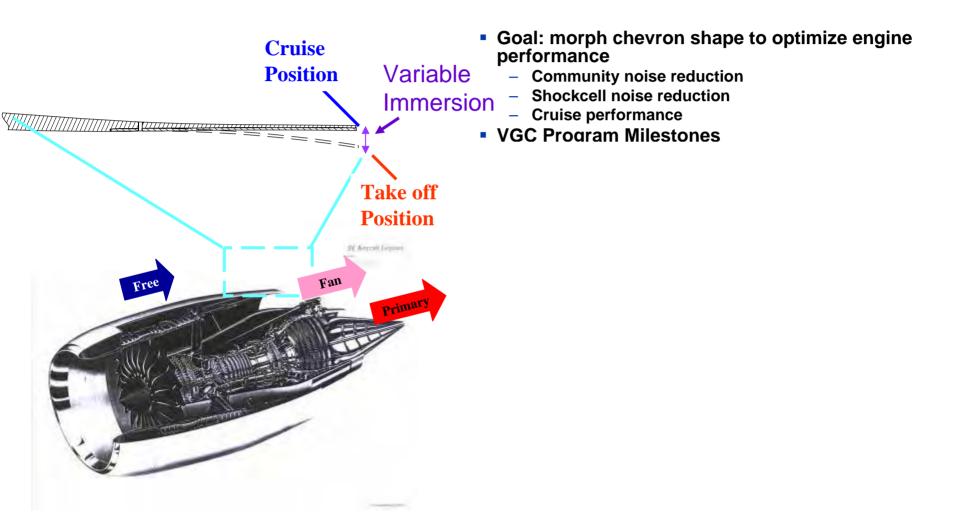
- Even small structural changes are difficult
- Requires heavy motors, hydraulics, structural reinforcement
- Complexity
- Expensive

"Smart" materials lead to new morphing concepts

- Fully integrated, distributed actuation
- Conventional components given additional capability
- Does NOT add weight
- Simple mechanisms,

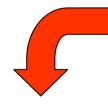

Smart materials applicable to morphing structures

- Piezoelectrics, electrostrictives, piezopolymers (electro elastic)
- Magnetostrictives, ferromagnetic SMA (magneto elastic)
- Shape memory alloys, polymers (thermal elastic)


Shape Memory Alloy - Nitinol

Variable Geometry Chevrons

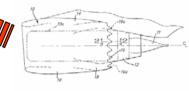
- Reconfigurable engine nozzle fan chevron
- Apply morphing structures technology to enable efficient chevron shape change
- Shape Memory Alloy is key technology
- Example of new testing capability
- Mature technology TRL level 6-7

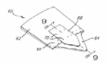

Variable Geometry Chevron Overview

VGC Roadmap

Boeing Commercial Airplanes | Aeroacoustics

VGC GE-115B Design and Fab

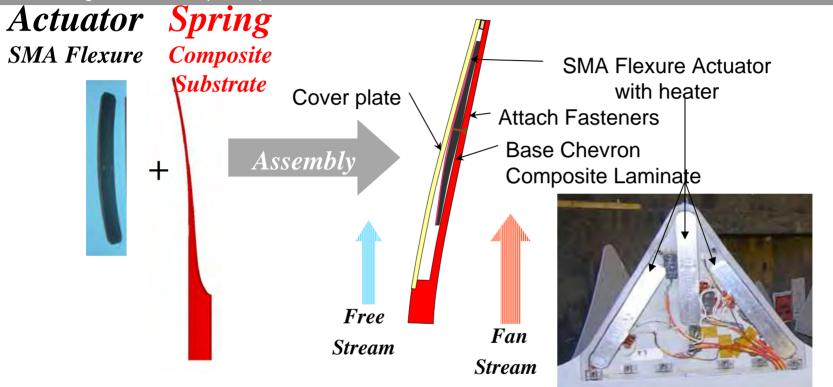




NTF Concept Validation December 2002

Boeing VGC Patent **6,718,752** May 2002

Flight Test August 2005


Static Engine Test June 2006

Future Applications

VGC Design

Boeing Commercial Airplanes | Aeroacoustics

– Design

- Simple, low part count
- Low weight
- Fully integrated
- Variables
 - SMA Actuator properties
 - Substrate properties
 - Thermal environment

- Geometry

- Fabrication
 - Thrust Reverser sleeve fabrication used production tooling and techniques
 - Nitinol actuator fabrication based on Boeing PW state of the art processes
- Thermal Management
 - Autonomous Operation
 - Controlled Operation

Quiet Technology Demonstrator 2 VGC Flight Test Overview

- All Nippon Airway 777-300ER w/ GE115B engine
- 6 flights over 5 days with 3 engine configurations
- Instrumentation, power, gages, and controller worked without failure
- Demonstrated autonomous (nonpowered) operation
- Demonstrate individual VGC control
 - Closed loop controller maintained the prescribed in-flight tip immersions
- 9 Chevron configurations tested
 - Parametric study
 - Uniform immersion
 - Non uniform immersion

Static Engine Test

- 3 days of testing June 2006
- 2 engine configurations
- Noise performance evaluated
 - 150' polar arc
 - Phased Array
- Demonstrated full autonomous operation
- Parametric studies of various immerions
- Completed all planned tests except engine operability study

GE Peebles, OH, Engine Test Stand

VGC Summary

Boeing Commercial Airplanes | Aeroacoustics

- Successful full scale system development applying state-of-the-art morphing structures to jet noise technology
 - Useful technology for testing (wind tunnel to flight)
 - First use of morphing structures technology to affect commercial aircraft noise performance
 - Rapid cutting edge technology development
 - Demonstration of SMA based actuators maturity
- Successful rebuild of SMA actuators after flight test
- New DAQ and Control system using COTS software and hardware.
- Demonstrated autonomous and controlled actuation.
 Demonstrated ability to optimize aircraft performance at multiple flight conditions.

Changes design philosophy: design for optimum performance at each condition of interest.

 Boeing is applying this technology to other aerospace applications including other noise problems