

Lloyd Smith

Associate Professor School of Mechanical and Materials Engineering

First Year Project

- The Effect of Surface Treatment on the Degradation of Composite Adhesives
 - Surface treatment
 - Strength
 - Fracture toughness
 - Durability
 - Accelerated test methods
 - Wedge crack

Coupons

- Double cantilever beam
 - Mode I fracture toughness
- Wide area lap shear
 - Static load (s)
 - Low frequency (0.01 hz) cyclic load
- Wedge crack coupons
 - Compliant adherends

Materials

- Low cost prepreg adherends
 777 or 7e7
- Co-bonded adhesive films
 - Metal bond 1515-3 or AF555
- Surface treatments
 - No prep (6001 peel ply)
 - Grit blast
 - Plasma etch

Simulated Environmental Exposure

- 140F water immersion
- Up to 10k hour durations
- Post mortem surface characterization to be performed at University of Washington

Environmental Exposure Facility

- Aggressive environments
- Temperature
- Stress
- Time

Environmental Exposure Facility

Fickian and Non-Fickian Weight Change

Modeling Degradation

$$C(t,z) = \int_{0}^{t} \exp\left(-k(t-\tau)\right) \cdot \left[\frac{dC_{o}}{d\tau}\right] \cdot d\tau$$

$$\overline{C}(t) = \frac{1}{h} \int_{0}^{h} C(t, z) \cdot dz$$

Comparison of predicted and measured moisture concentration

Proposed First Year Project

- Long term durability
 - Select a "young" composite material with multiple cure schedules
 - Load matrix (lap shear or +/- 45 degree coupons) at service temperature in aviation environments
 - Compare weight gain, strength and modulus retention as a function of time for disparate cure schedules

Proposed First Year Project

- Modeling degradation
 - Expose material to aggressive solvent with measurable weight change (gain or loss)
 - Characterize fundamental degradation parameters (*D*, *c_m*, *k*)
 - Consider temperature and geometry effects