

Course Development Maintenance of Composite Aircraft Structures

Course Development: Maintenance of Composite Aircraft Structures

- Motivation and Key Issues
 - Practical, introductory-level course for engineers, technicians and inspectors
- Objective
 - Develop framework, content and assessment criteria as a basis for curriculum training
 - Online course, with 'hands-on' laboratory, which will increase awareness of critical safety issues in composites' maintenance
- Approach
 - Series of workshops and 'beta' class with experienced practitioners
 - Industry, regulatory and academic collaboration

JMS

FAA Sponsored Project Information

- Principal Investigators & Researchers
 - Charles Seaton, PI, Edmonds Community College
 - Cyndi Schaeffer, Executive Director, EdCC
- FAA Technical Monitor
 - Peter Shyprykevich
- Other FAA Personnel Involved
 - Larry Ilcewicz, Curt Davies
- Industry Participation
 - Boeing, Airbus, EASA, Hexcel, Heatcon, Abaris and others

Motivation and Key Issues Outcomes

- Practical, introductory-level course for engineers, technicians and inspectors FAA/Edmonds C.C. Cooperative Agreement (2004-2006)
 - Short course (5–7 days), incl. labs, worth 3-5 credits
 - Current efforts include web-based, distance learning
 - Applicable for other decision-makers, such as production planners, purchasing agents and executive management
- FAA guidelines on training needs (precursor to policy)

Motivation and Key Issues Critical Composite Maintenance and Repair Issues

- Understand roles & responsibilities (importance of teamwork)
- Recognize composite damage types & sources (proper team reaction to possible service damage)
- Understand the inspection methods & procedures needed for detection, characterization and disposition of damage
- Understand regulations and importance of approved source documentation (+ process for cases requiring new approval)
- Realize the unique processing issues and quality controls needed for bonded composite repairs
- Realize the unique processing issues and quality controls needed for bolted composite repairs
- Realize need for more training to acquire technician, inspector or engineering skills (avoid working beyond skill limits)

Approach

- Series of workshops to bring regulators and industry together on technical issues
 - FAA/NRC Workshop in Wash. DC (May 18 & 19, 2004)
 Executive review of systematic, repair, NDI & training issues
 - 2004 Kickoff for FAA research to evaluate training needs
 - 2005 and 2006 FAA Workshops to review progress in establishing training needs
- Industry & government experts recruited to support the development of training standards
 - 2004 Seattle workshop defined terminal course objectives (TCO)
 - 2005 Chicago workshop used to review draft modules that will be released with the TCO as industry standards
 - Boeing/Airbus/EASA WG review recommend updates
 - Initial course scheduled to be completed in 2006
 - FAA report with *industry standard modules* released in 2006

Primary Deliverables

CECAM

- Terminal Course Objectives (TCO)
 + Course Description Abstract
- Modules (industry standards)
 Safety Messages
- Standard Student Assessments

- Testimonials (volunteers support)
- Storyboard of a typical course outline

• FAA guidelines (precursor to policy) on training needs: Critical Composite Maintenance & Repair Issues

SAE AIR5279

Issued

1999-03

AEROSPACE INFORMATION REPORT

AIR4938

1996-09 Issued

AIR4938 Technician/Specialist

Submitted for recognition as an American National Standard

COMPOSITE AND BONDED STRUCTURE TECHNICIAN/SPECIALIST: TRAINING DOCUMENT

AIR5278 Engineer

The Engineering Society
For Advancing Mobility
Land Sea Air and Space INTERNATIONÂL

400 Commonwealth Drive, Warrendale, PA 15096-0001

AEROSPACE INFORMATION REPORT

Submitted for recognition as an American National Standard

SAE AIR5278

Issued 1999-03

Composite and Bonded Structure Engineers: Training Document

AIR5279 Inspector

The Engineering Society
For Advancing Mobility
Land Sea Air and Space INTERNATIONAL

400 Commonwealth Drive, Warrendale, PA 15096-0001

AEROSPACE INFORMATION REPORT

Submitted for recognition as an American National Standard

Composite and Bonded Structure Inspector: Training Document

TCOs Organized by Key Subjects

A: Understand basics of composite materials technology

- <u>B</u>: Understand basics of composite materials maintenance and repair
 - <u>C</u>: Understand roles _ and responsibilities
- <u>D</u>: Recognize composite damage types and sources
 - E: Identify & describe information contained in documentation

Base Knowledge

Teamwork & /
Disposition

Damage Detection & Characterization

Repair Processes

<u>F</u>: Describe composite laminate fabrication & bonded repair methods

<u>K</u>: Case team studies

- <u>J</u>: Understand other critical elements of composite maintenance & repair
- <u>I</u>: Describe composite laminate bolted assembly & repair methods perform bolted repair
 - <u>H</u>: Describe composite damage and repair inspection procedures

<u>G</u>: Perform bonded composite repair

Base Knowledge

- Prerequisite modules (to be provided as self study)
 - Module A: Understand basics of composite materials
 - Module B: Understand basics of composite maintenance and repair
 - Module J: Realize other critical elements of composite maintenance and repair
- Developed by Keith Armstrong
 - Basic composite knowledge that will be useful for engineers, inspectors, technicians and others that will take the course
- Many elements covered in Module J are also intended to make students aware of some important areas that will not be covered by the main course

Teamwork and Disposition

- Unique modules with critical safety messages
 - Module C: Understand roles and responsibilities
 - Module E: Identify & describe info contained in documentation
 - Module K: Case team studies [Lab #6]
- Successful maintenance & repair relies on teamwork
 - Engineers, inspectors & technicians have diverse training needs and acquired skills
 - Good communication between OEM and users
- Approved maintenance practices and repair procedures are developed & substantiated to meet requirements
 - Specific product design, process and database dependence
 - Limits and constraints of approved source documentation

Damage Detection & Characterization

- Essential modules for detecting and solving a problem
 - Module D: Recognize composite damage types and sources
 - Module H: Describe composite damage and repair inspection procedures
- Working outside the limits of approved documentation
 - Difficult to substantiate repair of all possible environmental and accidental damage cases in initial type certification
 - Standard designs, analyses & shared databases don't exist to support the substantiation of composite field repairs
- Some damage scenarios require special inspections
 - Communication between operations, maintenance and OEM personnel for anomalous damaging events

Repair Processes

- Modules needed to realize critical issues in composite repair processes and quality control procedures
 - Module F: Describe composite laminate fabrication and bonded repair methods
 - Module G: Perform bonded composite repair
 - Module I: Describe composite laminate bolted assembly & repair methods and perform/inspect bolted repair
- Hands-on labs, videos and testimonials help gain an appreciation for process-related safety messages
- Design and process detail differences are likely in advanced, product-specific, "how-to" training

Elements of Curriculum

A Center of Excellence

Advanced Materials in

Transport Aircraft Structures

Relationship to Course Design

Elements (public domain)	Road Map	Custom Curriculum is a unique blend of:
TCOs & Content		Learning techniques
Flight Safety Messages	Story Board (next slide for example)	Modified mix of elements
Testimonials		Teaching format
Videos		Target audience characteristics

Edmonds Community College

Tuesday

Intro to Composite Maintenance & Repair Timeline

Morning

8:00 to 9:50

Lecture

Supplemental Mode[s]:

P. Pt Presentation

Testimonial from Practitioner

Topics: TCO [E] Identify & describe information contained in documentations

E1: Describe requirements in material & process specifications and structural repair manuals

E2: Demonstrate use of source documents

E3: Identify & demonstrate use of regulatory documents

E4: Understand the requirements and engineering approvals necessary for valid sources of technical information & maintenance instructions

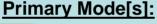
Fight Safety Message #3

Total Time: 1hr 50min

Morning

9:10 to 10:10

Intermission



Total Time: 20 min

Morning

10:10 to 12:00

Lecture

Supplemental Mode[s]:

P. Pt Presentation

Video

Topics: TCO [F] Describe composite laminate fabrication & bonded repair methods

F1: Understand the basics of composite laminate fabrication

F2: Understand the basics of composite bonded repair

F3: Describe the detailed processing steps necessary for laminate fabrication [factory], bonded repair [field], and Material Review Board (OEM)

F4: Describe key characteristics and processing parameters for laminate fabrication

F5: Identify typical processing defects which occur in composite laminate fabrication & bonded repair.

Testimonial from Practitioner

Fight Safety Message #4

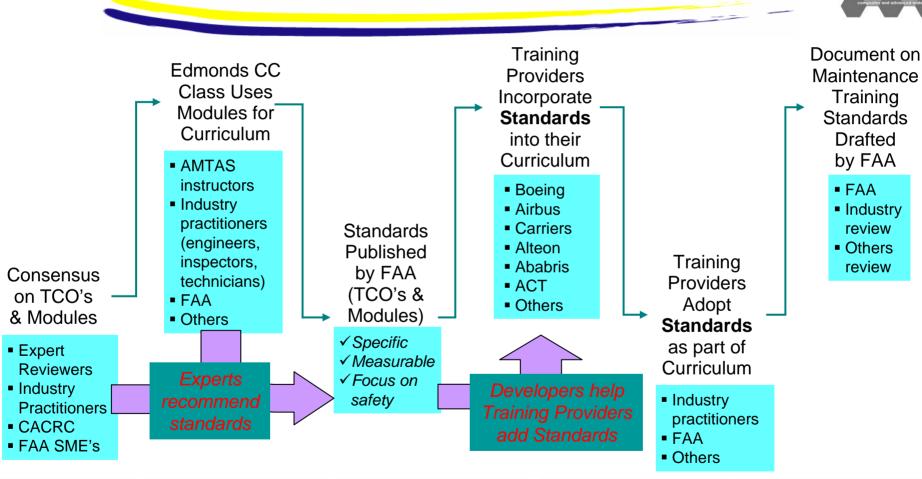
Total Time: 1hr 50min

<u>Afternoon</u>

12:00 to 1:00

Edmonds Community College

Total Time: 1 hr


JWS

Sept '05

Summary Approach and Timelines

Edmonds Community College

Winter '05

Fall '06

Summer '06

Spring '06

A Look Forward

Benefit to Aviation

This development relates to a FAA goal for outlining what needs to be considered for aircraft safety. It is intended to help industry develop guidelines, standards and other training

Future needs

- Identify additional training development needs
- Provide directions for future research and development