

Structural Health Monitoring for Life Management of Aircraft

-SHM System for Composite Structures -

Sridhar Krishnaswamy s-krishnaswamy@northwestern.edu

JMS SHM System for Composite Structures

• Motivation:

Impact damage in composite structures followed by continued cyclic loading can lead to structural failure and an SHM system to monitor these will be useful.

• Objective:

Develop a SHM system to detect and size impact damage and predict remaining lifetime of a laminated composite component.

• Approach:

Modally-selective Lamb wave sensors coupled with damage growth laws and probabilistic lifetime calculations

Northwestern University

FAA Sponsored Project Information

- Principal Investigators & Researchers
 - J.D. Achenbach
 - Sridhar Krishnaswamy
 - Isaac M. Daniel
 - Gabriela Petculescu
- FAA Technical Monitor
 - Peter Shyprykevich
- Industry Participation
 - Ed White, Boeing Phantom Works

- A laminated composite panel suffers impact damage
 → matrix damage and delaminations.
- The panel is subject to cyclic loading which causes the damage to grow.
- A permanently installed SHM system comprising ultrasonic probes detects/sizes the damage.
- A probabilistic fatigue damage model estimates the remaining lifetime of the structure.

JMS SHM of Composite Structures

• Sensor Development:

- Modally-selective Lamb wave sensors
 - Measurement of distributed damage via changes in propagation due to the dispersive nature of the Lamb-waves
 - Mapping of delaminations with Lamb-wave tomography
- Damage growth laws
- Probabilistic estimation of remaining lifetime

Northwestern University

Mode-Selective Lamb-Wave Sensors

The comb design:

- periodic array of sources (period= λ_0) -

Characteristics:

- unobtrusive: 0.3 mm thick
- malleable
- inexpensive
- mode-selective

cross-section Northwestern University The Joint Advanced Materials and Structures Center of Excellence

STEPS in designing/fabricating transducers for the desired **Lamb mode**:

- 1) from the composite properties (elastic tensor, density, layup)
 - ➔ determine the dispersion curves
- 2) identify a region with minimal dispersion \rightarrow

known velocity c and frequency (f_0)

- 3) design a comb mask with finger spacing $\lambda_0 = c / f_0$
- 4) fabricate the electrodes
- 5) assemble the transducers

<u>Note</u>: it is desirable to design a sensor which, at a fixed λ_0 , can excite individual modes at specific frequencies: $\lambda_0 = c_1/f_1 = c_2/f_2 = c_3/f_3 \dots$

¹⁰

A Center of Evcellen

A Center of Evcellen

The Joint Advanced Materials and Structures Center of Excellence

Northwestern University

Delamination Signature Time-Delay

Northwestern University

The Joint Advanced Materials and Structures Center of Excellence

A Center of Excellence

Transport Aircraft Structures

Cecam

Impact-Induced Delaminations

Material:

Toray T800 BMS 8-276 manufactured by: NIAR, Wichita, KS

- \rightarrow cross-ply [0/90]_{6S}
- \rightarrow carbon-epoxy composite
- \rightarrow 4.6mm thick (24 plies)

Northwestern University

Northwestern University The Joint Advanced Materials and Structures Center of Excellence

17

Impact Delaminations

- test I; C-scan image of damage -

Northwestern University The Joint Advanced Materials and Structures Center of Excellence

Impact Delaminations

- test II ; C-scan image of damage -

<u>Scenario</u>: i) composite part instrumented with sensors suffers an impact; ii) velocity changes \rightarrow time-delay (τ); iii) convert τ into damage level (S)

How is <u>S</u> determined?

 $S(\tau)=a+b\tau^m$

coefficients **a,b**, and **m** are determined *empirically*

<u>Note</u>: $S(\tau) \rightarrow$ damage-type specific

delamination size S

time delay τ

- 1) continuously increase the impact load
- 2) C-scan image to determine delamination size *after each impact*
- 3) measure time delay after each impact

The Joint Advanced Materials and Structures Center of Excellence

 Φ : a measure of the detected signal amplitude as a function of damage, independent from *coupling* or any other factor, as long as that factor affects all the modes <u>equally</u>.

<u>Note</u>: empirically determined Φ is used in the prediction algorithm.

Northwestern University The Joint Advanced Materials and Structures Center of Excellence

- improve the transducer sensitivity by replacing the PVDF with flexible *piezo-composite* (from Smart Material Inc.)
- verify the consistency of the measurements
- instrument a large panel with sensors for X-Y tomography
- having defined a damage-parameter, study the influence of fatigue on specimens with seeded delaminations; determine the growth-law

- Benefit to Aviation
 - Maintenance calls based on need
 - Cost saving
 - Reduced downtime
- Future needs
 - sensor powering... energy harvesting?
 - sensor data transmission...telemetry

Northwestern University

The Joint Advanced Materials and Structures Center of Excellence

