

FULL-SCALE DAMAGE TOLERANCE OF COMPOSITE SANDWICH STRUCTURES

K.S. Raju Department of Aerospace Engineering

FAA Sponsored Project Information

- Principal Investigators & Researchers
 - J.S. Tomblin
 - K.S. Raju, J. Dietiker, J.F. Acosta
 - J. Bakuckas
- FAA Technical Monitor
 - P. Shyprykevich
- Other FAA Personnel Involved
 - C. Davis
 - F. Leone
- Industry Participation
 - Adam Aircraft Co.(P. Harter, B. Allbritten)
 - Toray Composites (L. Cook)
 - NSE Composites (T. Walker)
 - Hostert Technical Services (R. Hostert)

JMS FULL-SCALE DAMAGE TOLERANCE OF COMPOSITE SANDWICH STRUCTURES

Background

JMS FULL-SCALE DAMAGE TOLERANCE OF COMPOSITE SANDWICH STRUCTURES

The Joint Advanced Materials and Structures Center of Excellence

A Center of Excellence

Advanced Materials in Transport Aircraft Structures

J **FULL-SCALE DAMAGE TOLERANCE OF COMPOSITE SANDWICH STRUCTURES**

- **Critical Damage States**
 - **IMPACT DAMAGE Load** transfer through damage region
 - **OPEN HOLE No load** transfer through damage region

FRONT

FRONT

FRACTURE

The Joint Advanced Materials and Structures Center of Excellence

A Center of Evcellence

Advanced Materials i Transport Aircraft Structures

JMS FULL-SCALE DAMAGE TOLERANCE OF COMPOSITE SANDWICH STRUCTURES

The Joint Advanced Materials and Structures Center of Excellence

A Center of Evcellen

Transport Aircraft Strue

JMS FULL-SCALE DAMAGE TOLERANCE OF COMPOSITE SANDWICH STRUCTURES

- Objectives
 - Design, fabrication & Testing of sandwich test article(s) under combined loading at WJHTC test facility
 - Material Systems & Sandwich Configuration
 - Geometry
 - Load-introduction
 - Attachments, etc.
 - Damage configurations notches, holes, impact damage, etc..
 - Instrumentation
 - Loading Scenarios
 - Failure load predictions
 - Testing

JMS Full-Scale Aircraft Structural Test Evaluation & Research (FASTER) Fixture

TEST FIXTURE SPECIFICATIONSRef

- Longitudinal loading
 - 1800 lbf/in
 - 16 load introduction points
- Circumferential (Reactive) loading
 - 1800 lbf/in
 - 28 load introduction points
- Frame Loads
 - 360 lbf/in
- Pressurization loading
 - 15 psi
 - Water / Air
 - SPECIMEN GEOMETRY
 - Radius : 60 130 inches (** 74 inches)
 - Length : 120 inches
 - Width : 68 inches

Ref. John Bakuckas, "Full-Scale Testing and Analysis of Fuselage Structure containing Multiple Cracks," DOT/FAA/AR-01/46.

- Material Systems
 - Facesheet
 - TORAY COMPOSITES T700SC-12K-50C/#2510 PWCF
 - Core
 - Plascore Nomex PN2-3/16-3.0 honeycomb (0.75 in thick)
- Sandwich Configuration (test section)
 - [45/0/45/core/45/0/45]

The Joint Advanced Materials and Structures Center of Excellence

DAMAGE CONFIGURATIONS

TEST CASE No.	DAMAGE TYPE	LOAD	.OAD LOADING T		-	
		CASE No.	Longitudinal loads	Pressurization loads	Longitudinal + Pressurization Loads	
1.	None	1A	X			
		1B		X		FAILURE
		1C			Χ	J
2.	10" diameter hole in top facesheet	2A	X			
		2B		X		
		2C			X	
3.	10" Longitudinal Notch (a/b = 20)	3A			X	
		3B		X		
4.	10" circumferential Notch (a/b = 20)	4A	X			
		4B			X	

TEST MATRIX

JMS FAILURE LOADS PREDICTION – Hostert Technical Services

A Center of Excellence

Test Case	Damage Type	Load Case No.	Loading Type	Primary M.S.	Failure Mode	Secondary M.S.	Failure Mode	Maximum	Panel Capability	
No.								Deflection	Longitudinal	Pressure
								(in)	Load (lb/in)	Load (psi)
1	None	1A	Longitudinal	0.871	ε ₁₁ ^T Fiber Strain	1.060	Core Shear	0.354	1871	-
(With Tab)		1B	Pressure	0.880	Core Shear	1.687	ε ₁₁ ^T Fiber Strain	0.309	-	25.4
1	None	1A	Longitudinal	1.220	Principal Stress Wrinkling	2.132	Core Shear	0.335	2220	-
(Without Tab)		1B	Pressure	2.364	ε ₂₂ ^T Fiber Strain	3.060	Core Shear	0.275	-	45.4
2	10'' Diameter Hole	1A	Longitudinal	0.700	Compression Wrinkling	1.236	ε ₁₁ ^T Fiber Strain	0.342	1700	-
		1B	Pressure	0.187	ε ₂₂ ^T Fiber Strain	0.380	Core Shear	0.463	-	16.0
3	10'' Longitudinal Notch	3A	Pressure	-0.541	ε ₂₂ ^T Fiber Strain	-0.284	ε ₁₁ ^T Fiber Strain	0.418	-	6.2
4	10'' Circumferential Notch	4A	Longitudinal	0.066	ε ₁₁ ^T Fiber Strain	0.786	ε ₂₂ ^T Fiber Strain	0.339	1066	-

FABRICATION OF TEST ARTICLES

A Center of Excellence

TOOLING FABRICATION

COMPLETED TOOLING

FABRICATION OF TEST ARTICLES

LAYUP

MACHINING

TEST ARTICLE FABRICATION STATUS

- First Test panel delivered to NIAR/WSU Jan 2006
 - Panel without hole/notch
 - Test article bonded with strain gages at NIAR/WSU
 - Test article shipped to FAA WJHTC 2nd week of Feb 2006
- Fabrication of test panels with hole and notches under progress (06/01/2006)
 - Panel with circumferential notch layup under progress
 - Shipped to WSU 7/10
 - Panel with longitudinal notch machining completed
 - Shipped to WSU 7/10
 - Panel with hole layup under progress
 - Manufacturing defects (wrinkles)

JMS TESTING : STATUS/SCHEDULE

- Advanced Materials in Transport Aircraft Structures
- Pressure seals acquired by NIAR /WSU Dec 2005 Jan 2006
 - Pressure seal shipped to FAA WJHTC 3rd week of February 2006
- July 10, 2006 Receive panels (notched) from Adam Aircraft Co.,
 - Strain gaging (~ 2 weeks)
- July 30, 2006- Ship panels(notched) and pressure seals to FAA WJHTC
- July 20, 2006- Receive panel (open hole) from Adam Aircraft Co.,
 - Strain gaging (~ 2 weeks)
- August 10, 2006- Ship panels(open-hole) and pressure seals to FAA WJHTC
- August 15, 2006 First panel installed
 - August 15 September 30, 2006 testing of panels

A Look Forward

- Future needs
 - Longitudinal compression loading capability in the fixture
 - Inclusion of shear loading
 - Fatigue
 - Structural details cut-outs, adhesive joints, etc.
 - Other damage types Impact damage, Lightening strike, off-axis notches, etc.