

# Effects of Repair Procedures Applied to Composite Airframe Structures

## National Institute for Aviation Research Wichita State University







June 21<sup>st</sup>, 2006 The Joint Advanced Materials and Structures Center of Excellence



# **Research Team**



## Principal Investigators & Researchers

- Dr. John Tomblin, Wichita State University
- Lamia Salah, Wichita State University
- Dr. Charles Yang, Wichita State University

## FAA Technical Monitor

- Peter Shyprykevich

## Other FAA Personnel Involved

- Curtis Davies, Larry Ilcewicz

## Industry Participation

- Spirit Aerosystems
- Raytheon Aircraft
- Adam Aircraft



# **Objective/ Overview**



To assess the effects of different variables on the strength and durability of repairs applied to composite laminate and sandwich structures

- Substrate stiffness
- Lap length
- Thickness
- > Repair materials
- Cure Temperatures
- > Static/ Fatigue Performance
- To evaluate the strength and durability of poorly bonded repairs that passed NDI
  - Poor Surface Preparation
  - Pre-bond Moisture
  - Improper Cure
  - Contamination
- To validate existing CACRC standards and provide recommendations pertaining to proper repair process implementation
- To develop an analysis method and corresponding failure criteria for structural sizing of bonded repairs

# **Research Methodology**

- Task1: to generate baseline static and fatigue repair data for both composite laminate and sandwich coupons using OEM repairs as well as field repairs. Laminate repaired coupons are tested in tension whereas sandwich repaired coupons are tested in compression
- Task 2: to evaluate the durability of "poor" bonded repairs that passed NDI (undetected weak repairs). Deviations in process parameters/ contamination will be induced during coupon repair and subsequent mechanical testing will be conducted to assess the static and residual strength after repeated loading.
- Task 3: task 2 results will be used to validate CACRC standards required for composite repair and inspection technicians and providing recommendations pertaining to repair process control to ensure repair bond structural integrity
- > Task4: to validate experimental results using FEM

JMS













# Relevance to FAA CS & CI In a number of Ways



### **Structural Substantiation:**

### Advances in Analysis & Test Building Blocks:

Developing an analysis method and corresponding failure criteria Building Block Substantiation Approach is the Ultimate Goal "big picture" of the Program

### Environmental Effects

Environmental Effects On Bonded Joint Strength Performance Included In Current Program Scope

### **Bonded Joint Processing Issues:**

Process and Repeatability issues as a result of producing 120 bonded repairs for 4 different material systems (480 bonds)

Effects of process parameters (Poor surface preparation, pre-bond moisture, cure cycle deviations, contamination) included in the current program

**CACRC** repair standard validation

Tied With Other FAA Project: "Acceptability Of Surface Preparation For Subsequent Bond"

### **Damage Tolerance and Maintenance Practices:**

### Fatigue and Damage Considerations:

Fatigue Effects On Bond Structural Performance Included In Plan BVID Tolerance Of Scarf Joints Proposed As Extension Of Current Plan.



- Panels manufactured and supplied by the OEM OEM Repair
  - Panels are machined into subpanels, scarfed and repaired using an OEM proprietary debulking procedure
  - > Repairs implemented using the laminate parent material as the repair material

### **Field Repair**

ACG T800/MTM45 unidirectional prepreg with FM300-2U film adhesive Hexcel M20 prepreg with Metalbond 1515-4 adhesive AMS 2980 CACRC using G40-800 6k intermediate modulus fibers with Epocast 52A/B Laminating resin







> 1-D Coupon used to isolate parameters/ effects studied

#### Strain Gage Layout (-30 Scarf Rate Panel 5 & 6)



#### **Panel Machining and Scarfing**





#### **Repair Panel NDI**

#### **Strain Gage Layout**



# **Test Matrix-Laminate**



#### **Test Matrix**

- > 288 coupons are being used to generate baseline static and fatigue data for OEM/field repairs
- > photogrammetry system is being used to monitor specimen deformation/ strain concentrations in the repair
- > ARAMIS strain data validated using strain gages
- Fatigue coupons are cycled for 165000 cycles and tested for residual strength to demonstrate repair acceptability.



|         |                |         |            | STATIC | FATIGUE |
|---------|----------------|---------|------------|--------|---------|
| Panel # | Thickness (in) | E (Msi) | Scarf Rate | RTA    | RTA     |
|         |                |         | N/A        | 6      | 6       |
| 1       |                | 7.2     | 20         | 6      | 6       |
|         | 0.1332         |         | 30         | 6      | 6       |
|         |                |         | N/A        | 6      | 6       |
| 2       |                | 9.1     | 20         | 6      | 6       |
|         |                |         | 30         | 6      | 6       |
|         |                |         | N/A        | 6      | 6       |
| 3       |                | 7.7     | 20         | 6      | 6       |
|         | 0.2368         |         | 30         | 6      | 6       |
|         |                |         | N/A        | 6      | 6       |
| 4       |                | 8.8     | 20         | 6      | 6       |
|         |                |         | 30         | 6      | 6       |

Mechanical Testing Strain Monitoring using ARAMIS



**Test Set-Up/ Test Matrix** 

- 45 coupons will be used to generate baseline static and fatigue data for OEM/ field repairs
- A four point bending beam fixture will be used for loading
- Fatigue coupons will be cycled for one lifetime equivalent to 150000 cycles and tested for residual strength to demonstrate repair acceptability.



| Core Cell Size | Repair Material                |                                                                                        | Scarf Overlap                                                                                                                                                                                                     | Static                                                                                                                                                                                                                                      | Fatigue                                                                                                                                                                                                                                                                                          |
|----------------|--------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |                                | Repair Type                                                                            | (in)                                                                                                                                                                                                              | (RTA)                                                                                                                                                                                                                                       | (RTA)                                                                                                                                                                                                                                                                                            |
|                |                                | Baseline undamaged                                                                     | N/A*                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                           | 6                                                                                                                                                                                                                                                                                                |
| 3/16           | Toray T700/2510 PW Prepreg     | Flush Scarf Repair                                                                     | 0.50                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                           | 6                                                                                                                                                                                                                                                                                                |
|                |                                | External Patch                                                                         | 0.50                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                           | 6                                                                                                                                                                                                                                                                                                |
| 3/16           | CACRC Wet lay-up Repair        | Flush Scarf Repair<br>External Patch                                                   | 0.50<br>0.50                                                                                                                                                                                                      | 3<br>3                                                                                                                                                                                                                                      | 6<br>6                                                                                                                                                                                                                                                                                           |
|                | Core Cell Size<br>3/16<br>3/16 | Core Cell SizeRepair Material3/16Toray T700/2510 PW Prepreg3/16CACRC Wet lay-up Repair | Core Cell SizeRepair MaterialRepair Type3/16Toray T700/2510 PW PrepregBaseline undamaged<br>Flush Scarf Repair<br>External Patch3/16CACRC Wet lay-up Repair<br>External PatchFlush Scarf Repair<br>External Patch | Core Cell SizeRepair MaterialRepair TypeScarf OverlapBaseline UndamagedN/A*3/16Toray T700/2510 PW PrepregBaseline UndamagedN/A*Flush Scarf Repair0.50External Patch0.503/16CACRC Wet Iay-up RepairFlush Scarf Repair0.50Start Patch0.500.50 | Core Cell SizeRepair MaterialRepair TypeScarf OverlapStatic(in)(RTA)3/16Toray T700/2510 PW PreprepBaseline undamagedN/A*37000/2510 PW PreprepFlush Scarf Repair0.50031000External Patch0.50033/16CACRC Wet lay-up RepairFlush Scarf Repair0.50031000External Patch0.50031000External Patch0.5003 |

\*Baseline undamaged unrepaired coupon



# Effects of Process Parameters



The quality of training and experience of repair technicians is directly associated with the technician's successful implementation of a repair Ref. John Tomblin et. al "Bonded Repairs of aircraft composite sandwich structures." FAA AR 03-74

Process deviation directly affects the strength of the repair

To investigate the performance of OEM/ field repairs using different methods







**CACRC Picture Frame Shear Elements** 



# Surface Free Energy by contact Angle Measurement



- A surface with a high surface free energy will produce a good bond
- Surface Free energy can be measured by measuring surface contact angle
- Screening study was conducted to determine surface free energy of contaminated surfaces ready for repair (Dr. Bill Stevenson)

Deicing Fluid Skydrol Hydraulic Fluid Jet Fuel Water

| Contaminant        | Exposure      | Surface Free Energy (mN/m) |  |
|--------------------|---------------|----------------------------|--|
| None               | N/A           | 55.16                      |  |
| Deicing Fluid      | 30 days @ RTD | 56.29                      |  |
| Skydrol            | 30 days @ RTD | 43.83                      |  |
| Jet Fuel JP-8      | 30 days @ RTD | 51.74                      |  |
| Water (85% @145°F) | Saturation    | 46.4                       |  |
| Salt Water         | 30 days@ RTD  | 56.41                      |  |



Mechanical Tests will be conducted to assess the effects of process deviations on these repairs

|           |                                        |           |       | Quantity of Test |               |  |
|-----------|----------------------------------------|-----------|-------|------------------|---------------|--|
| Load Mode | Load Mode Process                      |           | Scarf | OEM Repair       |               |  |
|           | Baramatara                             | Thickness | Rate  | Static (RTA)     | Repeated      |  |
|           | Parameters                             |           |       |                  | Loading (RTA) |  |
|           | Effects of Poor<br>Surface Preparation | 0.1332    | 20    | 6                | 6             |  |
|           |                                        | 0.2368    | 20    | 6                | 6             |  |
| Tension   | Effects of Improper<br>Cure            | 0.1332    | 20    | 6                | 6             |  |
|           |                                        | 0.2368    | 20    | 6                | 6             |  |
|           | Effects of Surface<br>Contaminant 1    | 0.1332    | 20    | 6                | 6             |  |
|           |                                        | 0.2368    | 20    | 6                | 6             |  |
|           | Effects of Surface<br>Contaminant 2    | 0.1332    | 20    | 6                | 6             |  |
|           |                                        | 0.2368    | 20    | 6                | 6             |  |
|           | Effects of Pre-bond<br>Moisture        | 0.1332    | 20    | 6                | 6             |  |
|           |                                        | 0.2368    | 20    | 6                | 6             |  |



Failure Loads vs. Scarf Rates (Panels 1 & 2)



Slight increase in load carrying capability for panel 1 compared to panel 2



Coupons fatigued at a strain level equivalent to 3000 microstrain for 165000 cycles







Coupons fatigued at a strain level equivalent to 3000 microstrain for 165000 cycles



# ARAMIS Strain Maps Preliminary Data





### Y-Strain Distribution for varying scarf rates -20, -30 Panel 1, 18 ply, RTD

Increased strain capability with an increase in scarf overlap, maximum strains achieved for the -30 panels (average far field strain = 9500 microstrain, peak strain = 16000 microstrain)



# ARAMIS Strain Maps Preliminary Data





### Y-Strain Distribution for varying scarf rates -20, -30 Panel 2, 18 ply, RTD

Increased strain capability with an increase in scarf overlap, maximum strains achieved for the -30 panels

(average far field strain = 8500 microstrain, peak strain = 11000 microstrain)

Stiffer panel (panel 2) has lower strain to failure than the softer panel (panel 1)





#### > SEM Analysis



Failure Mode: combination of a cohesive failure of the adhesive and interlaminar facing failure of the laminate indicative of a strong bond

SEM analysis shows fiber fracture, brittle/ shear failure of the adhesive





The Joint Advanced Materials and Structures Center of Excellence



# Analytical Validation 2-D FEA



**Scarf Joint** 

Stepped Joint 2-Dimensional Dynamic Finite Element Models

Adhesive Failure Criterion: Equivalent Plastic Strain=0.25

90-Deg Ply Failure Criterion: von Mises Equivalent Stress = 19 ksi

| OPT53 2D<br>Models | Test (lbf) | ABAQUS<br>Data | Deviatio<br>n % |
|--------------------|------------|----------------|-----------------|
| OPT53-1 Scarf      | 20,020,2   | 30,186.1       | 3.8             |
| OPT53-1 Stepped    | 29,089.3   | 29,653.6       | 1.9             |
| OPT53-2 Scarf      | 25 202 0   | 27,006.5       | 6.8             |
| OPT53-2 Stepped    | 23,292.0   | 23,930.8       | -5.4            |
| OPT53-3 Scarf      | 56 769 2   | 55,901.2       | -1.5            |
| OPT53-3 Stepped    | 50,700.5   | 49,062.7       | -13.6           |
| OPT53-4 Scarf      | 54 765 G   | 54,773.3       | 0.1             |
| OPT53-4 Stepped    | 54,705.0   | 49,751.6       | -9.2            |
| OPT53-5 Scarf      | 77 679 2   | 71,102.0       | -8.5            |
| OPT53-5 Stepped    | 11,010.3   | 74,264.6       | -4.4            |
| OPT53-6 Scarf      | 71 222 2   | 75,899.5       | 6.4             |
| OPT53-6 Stepped    | 11,000.0   | 75,036.5       | 5.2             |





### **3-D Finite Element Model of a Scarf Joint**

3-D FEA used to show edge effects and initiate failure around the scarf edge

|                | Total<br>Elements | Total<br>Nodes |
|----------------|-------------------|----------------|
| <b>OPT53-1</b> | 30,090            | 35,824         |
| <b>OPT53-2</b> | 36,900            | 44,448         |
| <b>OPT53-3</b> | 69,300            | 79,136         |
| <b>OPT53-4</b> | 65,655            | 75,680         |
| <b>OPT53-5</b> | 114,855           | 129,504        |
| <b>OPT53-6</b> | 128,535           | 144,800        |



**Overlap X-Coordinate (in)** 

### Surface Strain Comparison between 3-D FE Model and ARAMIS Data (OPT53-6)



# **Analytical Validation**



### 90-degree plies modeled as isotropic since ABAQUS only offers stress failure criteria for isotropic materials

| 90-degree Ply Failure (Effective Stress Limit =19,000 psi)<br>Adhesive Shear Failure PEEQ = 0.285 |              |                |                |       |  |
|---------------------------------------------------------------------------------------------------|--------------|----------------|----------------|-------|--|
|                                                                                                   | Test Data    | ABAQUS<br>Data | Deviation<br>% | v90   |  |
| OPT53-1 COM-QUA                                                                                   | 29,089.3 lbf | 24,635.4 lbf   | -15.3          | 0.200 |  |
| OPT53-2 COM-QUA                                                                                   | 25,292.0 lbf | 24,472.2 lbf   | -3.2           | 0.150 |  |
| OPT53-3 COM-QUA                                                                                   | 56,768.3 lbf | 57,532.4 lbf   | 1.3            | 0.017 |  |
| OPT53-4 COM-QUA                                                                                   | 54,765.6 lbf | 54,444.6 lbf   | -0.6           | 0.017 |  |
| OPT53-5 COM-QUA                                                                                   | 77,678.3 lbf | 71,041.0 lbf   | -8.5           | 0.015 |  |
| OPT53-6 COM-QUA                                                                                   | 71,333.3 lbf | 66,171.2 lbf   | -7.2           | 0.017 |  |
| 90-degree Ply Failure (Effective Stress Limit =15,000 psi)<br>Adhesive Shear Failure PEEQ = 0.285 |              |                |                |       |  |
|                                                                                                   | Test Data    | ABAQUS<br>Data | Deviation<br>% | v90   |  |
| OPT53-3 COM-QUA                                                                                   | 56,768.3 lbf | 55,998.0 lbf   | -1.4           | 0.017 |  |
| OPT53-4 COM-QUA                                                                                   | 54,765.6 lbf | 52,149.0 lbf   | -4.8           | 0.017 |  |



- Laminate mechanical Testing to generate baseline repair data for various repair materials in progress
- Laminate repair using ACG MTM45/T800 in progress
- Panel Machining to generate mechanical data for contaminated coupons is in progress
- Screening panels for the sandwich configuration have been tested and are being resized to induce failure in the repair
- Improved analytical test results correlation with experimental data (3D FEM model)



**Benefits To Aviation:** 

- To assess the effects of surface contamination and process variations on the performance of bonded repairs
- To develop rigorous repeatable repair processes that ensure structural integrity of bonded repairs
- > To gain confidence in bonded structural repairs
- > To provide guidance for analytical modeling of repairs