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Damage Tolerance and Durability of 
Fiber-Metal Laminates for Aircraft 

Structures

• Motivation and Key Issues 
– Fiber metal laminate is a new generation of primary structure for 

pressurized transport fuselage.  However, there are limited and 
insufficient information available about mechanical behavior of 
FML in the  published literature, and some areas still remains to be 
further verified by more detailed testing and analysis.

• Objective
– To investigate the damage tolerance and durability of bi-

directionally reinforced GLARE laminates.  Such information will
be used to support the airworthiness certification of GLARE 
structures

• Approach
– To develop analytical methods validated by experiments
– To develop information system
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FAA Sponsored Project 
Information

• Principal Investigators & Researchers
Hyoungseock Seo, PhD student

Pouy Chang, PhD student
Professor H. Thomas Hahn
Professor Jenn-Ming Yang

Department of Mechanical & Aerospace Engineering
Department Materials Science Engineering

University of California, Los Angeles

• FAA Technical Monitor
– Mr. Curtis Davies

• Other FAA Personnel Involved
–

• Industry Participation
–
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Background

□ GLARE (GLAss fiber REinforced aluminum) 
laminates
– Hybrid composites consisting of alternating thin metal layers and 

glass fibers 

□ Advantages of GLARE
– High specific static mechanical prosperity 

and low density 
– Outstanding fatigue resistance
– Excellent impact resistance and damage 

tolerance
– Good corrosion and durability
– Easy inspection like aluminum structures
– Excellent flame resistance   
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Applications of GLARE in 
A380
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Background/GLARE 
laminates

Grade Al  layers Fiber layers
Alloy Thickness 

per layer
(mm)

Orientation Thicknes
s per 

layer(mm)
GLARE 1 7475-T6 0.3-0.4 Unidirectional 0.25 2.52

GLARE 2 2024-T3 0.2-0.5 Unidirectional 0.25 2.52

GLARE 3 2024-T3 0.2-0.5 0o/90o Cross-ply
(50%-50%)

0.25 2.52

GLARE 4 2024-T3 0.2-0.5 0o/90o/0o Cross-
ply(67%-33%)

0.375 2.45

GLARE 5 2024-T3 0.2-0.5 0o/90o/90o/0o Cross-
ply(50%-50%)

0.5 2.38

GLARE 6 2024-T3 0.2-0.5 +45o /-45o Cross-
ply(50%-50%)

0.25 2.52

Typical density 
(g/cm3)



7The Joint Advanced Materials and Structures Center of Excellence

Project Scope

To develop methodologies for guiding material 
development, property optimization and 
airthworthiness certification:

• Residual Strength Modeling and Validation
--open-hole notch strength
--residual strength after impact
--open-hole notch strength after fatigue

• Post-Impact Fatigue Behavior 
• Fatigue Crack Growth Modeling and Validation
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GLARE 4 and GLARE 5

<GLARE 5-2/1>

Unidirectional glass fibers 
layers 0˚/ 90˚/90˚/ 0˚
orientation

Aluminum 2024-T3

<GLARE 4-3/2>

Aluminum 2024-T3

Unidirectional glass 
fibers layers 0˚/ 90˚/ 0˚
orientation

* Provided by Aviation Equipment, Inc. (Costa, Mesa, CA) 
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Impact and Post-Impact 
Fatigue

□ Impact behavior
– Apply three different levels of impact energy to inflict different 

damages such as barely visible (dent), clearly visible (crack) and 
perforation 

– Characterize the extent of impact damage & strength retention
□ Post-impact fatigue behavior

– Measure the fatigue crack initiation life
– Measure the crack length vs fatigue cycles
– S-N curves
– Investigation of crack propagation at inner and outer metal layer by 

NDT (x-ray and ultrasonic c-scan method)
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Visible impact damage

(a) Dent damage 
(E=10.8 J) 
GLARE 5 

(b) Crack damage 
(E=18.1 J)       
GLARE 5

(a) (b) (c) (d)

(c) Dent damage 
(E=10.8 J)       
GLARE 4

(d) Crack damage 
(E=18.1 J)       
GLARE 4



11The Joint Advanced Materials and Structures Center of Excellence

Impact damage resistance

* Guocai Wu, et.al., Journal of material science (in press)
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Impact damage in GLARE

* Guocai Wu, et.al., Journal of material science (in press)
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Impact damage tolerance

<Residual strength after impact at different energy levels>

* Guocai Wu, et.al., Journal of material science (in press)
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Post-impact fatigue test

□ Post-impact fatigue 
test
– Load ratio R=0.1
– Cyclic loading
– Impact energy: 10.8, 

18.1 and 34.5 J
– Load level: 20, 30, 

40, 50 and 60% of 
residual strength

– Frequency: 10 Hz   



15The Joint Advanced Materials and Structures Center of Excellence

Crack growth for GLARE 4 with 
visible impact damage

N=0 cycle N=292584 cycle

N=472584 cycle N=1002590 cycle

Crack initiated at the impacted side



16The Joint Advanced Materials and Structures Center of Excellence

Crack growth for GLARE 5 with 
visible impact damage 

N=115000 cycleN=0 cycle

N=180000 cycle N=433541 cycle



17The Joint Advanced Materials and Structures Center of Excellence

Fatigue crack initiation vs. 
final cycle
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Post-Impact Fatigue Life for Visible 
Impact Damage (crack)
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Fatigue Crack Growth with an 
Impacted Dent (GLARE4)
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Fatigue Crack Growth with an 
Impacted Dent (GLARE5)
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S-N curve for dent damage by impact
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Ultrasonic c-scan images for 
GLARE

Glare 4-3/2 with dent at 20% load: 

Post-impact fatigue behavior 

Glare 5-2/1 with dent: Just impact behavior
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Important Findings for 
Certification of GLARE (cont’d)

• Post-Impact Fatigue
-Crack in impacted GLARE under fatigue loading only initiated and grew 

in the impacted, outside, inspectable Al layer
-The stress state around the 3-D dent is complicated.  A non-symmetrical 

stress state developed where high tensile stresses are experienced on 
the impacted side.

--The propagation of cracks to the edge of the panel did not lead to 
catastrophic failure because the composite layer has sufficient 
residual strength to carry the fatigue load

--The fatigue crack initiation life in the GLARE is shorter than the Al alloy.  
However, crack initiation life for GLARE  is only a small fraction of the 
fatigue life whereas the crack initiation life is very close to fatigue life 
for Al alloy.
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Important Findings for 
Certification of GLARE (cont’d)

• Post-Impact Fatigue
-Crack in impacted GLARE under fatigue loading only initiated and grew 

in the impacted, outside, inspectable Al layer
-The stress state around the 3-D dent is complicated.  A non-symmetrical 

stress state developed where high tensile stresses are experienced on 
the impacted side.

--The propagation of cracks to the edge of the panel did not lead to 
catastrophic failure because the composite layer has sufficient 
residual strength to carry the fatigue load

--The fatigue crack initiation life in the GLARE is shorter than the Al alloy.  
However, crack initiation life for GLARE  is only a small fraction of the 
fatigue life whereas the crack initiation life is very close to fatigue life 
for Al alloy.
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Off-Axis Fatigue Behavior

Experimental Set-up: 
-Specimen with 0°,15°,30°, and 45° off-axis angles.
-Specimen geometries: 8×1“ with a center hole(0.25“ in diameter)
-Constant amplitude fatigue testing with R=0.1and f=10 Hz.
-For GLARE4-3/2, the applied loads are 40% and 30% of the 

notched strength.
-For GLARE5-2/1, the applied load is 40% of the notched 

strength.
-Crack length vs fatigue cycles were measured.
-The post-fatigue residual tensile strength was measured as well.
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Fatigue Crack Propagation-
GLARE4-3/2

GLARE4-3/2 off-axis fatigue
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• As off-axis angles increase, the fatigue life decreases.
• For GLARE4-3/2 θ=0° specimen, constant crack growth rates could be 

reached. 
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Fatigue Crack Propagation-
GLARE5-2/1

GLARE5-2/1 OFF-AXIS FATIGUE
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• As off-axis angles increase, the fatigue life decreases
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Fatigue Life v.s. Crack Initiation Life

• For GLARE4&5 off-axis specimens, the fatigue life decreases as off-axis 
angles increase.

• As the maximum applied load decreases, the fatigue life and crack initiation 
cycles increase for Glare4-3/2 off-axis specimens.

Fatigue life vs crack initiation life
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Off-Axis Fatigue of GLAER4-3/2

• Direction of crack propagation is not perpendicular to the fiber
direction for the off-axis specimens.

Off axis θ=30°
Nucleation angle φ= 14°.

Off axis θ=15°
Nucleation angle φ= 20°. Off axis θ=45°

Nucleation angle φ= 8°.
Off axis θ=0°
Nucleation angle φ= 0°.
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3-D Finite Element Modeling

Maximum stress site.

• GLARE4-3/2 -0 off-axis is modeled 
with ABAQUS.

• Before crack initiation, assuming 
there is no de-lamination presence. 

• Boundary conditions: Rx,Ry,Rz =0.
• Interface contact: Tie
• Applied load= 160Mpa
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Off-Axis Stress Mapping

• GLARE4-3/2 -15 off-axis is modeled.
• Maximum stress intensity site oriented due 

to fiber orientations.
• Left: Undeformed shape.
• Bottom: Stress mapping on surface and 

cross-section.

Oriented   maximum stress site.
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Off-Axis Fatigue of GLARE5-2/1

-Direction of crack propagation is not perpendicular to the 
fiber direction for the off-axis specimens.

Off axis θ=15°
Nucleation angle φ= 12°.

Off axis θ=0°
Nucleation angle φ= 0°.

Off axis θ=30°
Nucleation angle φ= 10°.

Off axis θ=45°
Nucleation angle φ= 8°.

Ruptured !
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Ultrasonic C-scan Images

-The delamination profiles are consistent with crack growth direction.

θ=0°

No fatigue test done.
θ= 15° θ= 30° θ= 45°

Edge delamination
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Post-Fatigue Residual Strength

• The tensile strength decreased as off-
axis angles increased for both 
GLARE4-3/2 and GLARE5-21 off-
axis specimens.

• For GLARE4-3/2 specimens when the 
off-axis angles increase, the post-
fatigue residual strength decreases. 

• For GLARE5-2/1 off-axis specimens, 
they fractured during the fatigue tests 
except  0° off-axis coupon specimen. 
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Fatigue Crack Growth Models

• Mechanism-based models
-Calculating the effective stress intensity factor in the metal layer and strain 

energy release rate associated with de-lamination in the wake of the crack 
via a bridged crack model. The crack and de-lamination growth rates in the 
FML are then prediction suing two power-law type empirical relation ships. 
Mechanism-based models

• Mechanistic models
-Using three-dimensional finite element analysis to obtain the model I stress

intensity factor in the metal layer, a Paris-type power law is used to predict 
the crack growth rate in the FML.

• However, these models require a complicated analysis and there are 
discrepancies between the predictions and experimental results.
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Fatigue Crack Grwoth Modeling for 
GLARE3-4/3 &8/7

Predicted and experimental fatigue 
crack growth rates in GLARE3-8/7 
type laminates under a maximum cyclic 
stress of 80,100, and 120 MPa using a 
generic power law

D.J.Shim, R.C. Alderlliesten,S.M.Spearing,D.A. Burianek, MIT

15 Jan 2003
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Phenomenological Model

• A simple and more practical model for predicting crack 
growth

• Physical mechanism of steady crack growth: both crack 
growth and delamination depend directly on the bridging 
stress

• The effective stress intensity factor range actually experienced
at the crack tip is also a constant as a result of constant crack 
growth

• It was assumed that with constant crack growth rate, the 
equivalent crack length is independent of cyclic loadings, the 
saw-cut size, the crack types and the specimen width.

• The equivalent crack length is only affected by the lay-up of 
the laminates.
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Phenomenological Model For 
Crack Growth Prediction

Schematic of center-crack tension specimen Ya-Jun Guo*,Xue-Ren Wu, Composites Science And Technology 12 Feb 1999

• Walker’s type equation applicable to GLARE(  Constituent metal is AL-2024-T3) 
• Crack growth constants of the constituent metal in GLARE :C, m, &n determined 

experimentally by curve fitting.. 

Crack opening stress obtained from Dugdale model:

, _r Al residual stressσ =

sec( / )oF s wπ=
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Calculation of Equivalent 
Crack Length

• Equivalent crack length was determined experimentally by using Walker’s type equation. 

Equivalent crack length against 2a/w

_ _ol equivalent crack length=

min

max

op
c

op

S S
R

S S
−

=
−

sec( / )oF s wπ=

( )max minsec( / )K a w S S aπ πΔ = ⋅ −

Ya-Jun Guo*,Xue-Ren Wu, Composites Science And Technology 12 Feb 1999
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Equivalent crack length 
GLARE4-3/2

• For Glare4-θ=0°,  L= 3.75 mm
• The equivalent crack length was assumed to be constant for constant 

growth rate.
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Equivalent crack length for off-axis
GLARE4-3/2

Model failed for the off-axis fiber
metal laminates and needed to be modified.

Model failed for the off-axis fiber
metal laminates and needed to be modified.
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Equivalent crack length for off-axis 
GLARE5-2/1

Model failed for the off-axis fiber
metal laminates and needed to be modified.

Model failed for the off-axis fiber
metal laminates and needed to be modified.
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Off-axis phenomenological model 
GLARE4&5

• Based on observation of L v.s. 2a/w, we propose

Where a is the crack length, w is the width, m is the slope and l is 
initial characteristic crack length. Ignore the high order terms. 

And, for constant growth rate, m =0.
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Effective Stress Intensity Range
GLARE4

• For GLARE4-2/1 θ=0° off-axis, a constant equivalent crack length is applied. 
• Good agreement is achieved between tested results and off-axis model.

1/ 2( )eff MPa mΔΚ ⋅
1/ 2( )eff MPa mΔΚ ⋅



45The Joint Advanced Materials and Structures Center of Excellence

Fatigue Crack Growth Prediction for 
GLARE4

• For off-axis specimens, the modified equivalent crack length is applied.
• Good agreement could be achieved between tested results and off-axis 

fatigue model.

1/ 2( )eff MPa mΔΚ ⋅1/ 2( )eff MPa mΔΚ ⋅
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Fatigue Crack Growth Prediction for 
GLARE5

• For GLARE5-2/1 Ø=0° and 15° off –axis, the vravk 
growth rate could be predicted by applying the modified 
off-axis fatigue model.

1/ 2( )eff MPa mΔΚ ⋅1/ 2( )eff MPa mΔΚ ⋅
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Fatigue Crack Growth Prediction for 
GLARE5

• For GLARE5-2/1 Ø=30° and 45° off-axis specimens, good 
agreement was achieved with the tested data based on the 
off-axis phenomenological fatigue model  . 

1/ 2( )eff MPa mΔΚ ⋅1/ 2( )eff MPa mΔΚ ⋅
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Important Findings for 
Certification of GLARE (cont’d)

• Constant Amplitude Fatigue
--Fatigue crack initiated mainly in the Al layer in GLARE.  Al layer 

carried more load than the composite layers due to their high 
stiffness

--Crack growth and delamination form a balanced mechanisms in 
which both process are continuously influencing each other 
during fatigue life

--Fatigue crack growth rate is sensitive to fiber orientations.  
Crack growth rates increase as the off-axis angle increases due 
to less effective bridging effect and larger delamination zone

--A simple phenomenological model could be used to predict the 
crack growth behavior in various GLARE laminates and 
different loading directions.



49The Joint Advanced Materials and Structures Center of Excellence

Information System for 
GLARE

• Database for GLARE laminates: collect and compile 
experimental data from published literatures. 

• The developed information system for the GLARE 
provides analysis over multiple sets of data collected 
under different experimental studies

• It allows for the comparison of different GLARE with 
various geometry and loading condition 
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Data entry system-1

-The first configuration is 
to compile the 
information from 
literatures related to 
GLARE

- It consists of the 
following tables: 
authors, data enterer, 
and references, notes, 
data source
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Data entry system-2

- The second 
configuration is to 
organize the 
information for GLARE 
including mechanical 
properties, 
experimental 
parameters etc



52The Joint Advanced Materials and Structures Center of Excellence

Data retrieval system

• Data retrieval system is 
based on query system

• A query lets you ask all 
kinds of questions 
about the information 
of GLARE that is stored 
in your database. 

• As seen in figure, you 
can choose the 
material name, layer 
number, load type by 
using window box 
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Results by data retrieval 
system

• Example: variation of 
pin-type bearing ultimate 
strength of GLARE 2-2/1

• By choosing x-axis (e/D) 
and y-axis (bearing 
ultimate strength), the 
data based on query 
table were able to plot 
with chosen option as 
seen in figure 
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Critical Issues

• Fatigue cracking in the Al layers appears 
to be inevitable

--Can we live with the crack? (probably not)
--How do we contain the crack?
--How do we prevent the cracking?
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A Look Forward

• Benefit to Aviation
--Development of analytical models validated by 
experiment and the information system are critical to 
design optimization and to support the certification.  

• Future needs
--Variable amplitude fatigue behavior
--Constant and variable amplitude fatigue
of mechanically fastened joints

--Lightning strike resistance
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