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Abstract eigenvalue problem

We consider eigenvalue problems for operators on the real li ne

that can be cast as linear (non-autonomous) ODE

� � � � � � �
� � � � � 	 

�

� 	 �
� � 	 
 �

where

� � � �
� �

is analytic in

�

.

These arise naturally for steady solutions of parabolic PDE s, e.g.

KdV, (coupled) NLS, CGL, reaction-diffusion equations, .. .

Usually: bounded solution 
 �
in spectrum.

Localized nontrivial solution 
 �

eigenvalue in point spectrum.

Asymptotically constant / periodic

� �� �
� �

:

essential spectrum spectrum bounded by, absolute

spectrum given by spectra of asymptotic states.



Spatial Dynamics and Spectral ODE

Prototype: Reaction diffusion system (RDS)

� 	 
 �
� � 	 

�

� � � � �
� � � � �
� � � � � �

Existence of t.w.: Equilibria satisfy travelling wave ODE

� � � �
� � � � �
� � � � � � � 	 � � 
 � 	 � � � 	 	 
 � � 
 � � � � � � � � �

homoclinic � pulse

periodic orbit � wave train, heteroclinic � front

Stability: Eigenvalue problem of linearization in travelling wave

� � � � � � � � �
� � � � �
� � � � � � � � � � � � � � � � � � � � � � � � �

Assume

� � � � constant or periodic,

� � � �
� � � � � � � � � �

.



Spatial eigenvalues and dispersion

Eigenvalue problem is linear (non-autonomous) ODE

� � � � � � �
� � �

Complex dispersion relations (

�
� � 	 �

):

� � � �
� � � � � � � � � � �
� � � � � � � � � � � � �
� � � � �

� � � �
� � � � � � � �
�

� � � � � �
� � � � � � � � � � � � � � �
� � 	


 � � �

Here

� � � � � �

is the period map of the evolution of � � � � � � �
� � �.

Call such � spatial eigenvalues or spatial Floquet exponents .

Simplest example:
	 � � � � 	 � � � 	 � � 	

� � �
� � � � �

� � � � � � �

�



Essential spectrum on :

�

vs. � � ��
Essential spectrum:

� 	 � � � � � � 	 	 
 � � � �
�


 	 � � �

.

Simplest example:

� � �
�


 	 � � � 	 � � � 
 	 � � �

�

� � � � � �
� 	 � � � 
 	 � � �

(as from Fourier transform).




�

�

Generally: Essential spectrum is given by two real equations,

three real unknowns 
 curves by implicit function theorem

whenever

� � � � � � 	 � � 
 	 � � � �

.



Continuation

Continuation numerics:

Newton method,

arclength parametrization,

parameter switching

[e.g. Allgower, Georg] .

Newton
method

step
predictor

Bad: Need initial conditions. Computes spectrum locally

(can continue several curves simultaneously).

Nice: Versatile, robust, very accurate. Can pathfollow

spectrum in parameters of nonlinear problem �

locate and determine type of onset of instability etc.



� � � for constant coefficients

Always connected set in

� �

.

RDS:

� � � � � � �� � � � � � � 	 � � 	 	 
 �

,

� � � � � � � � � 	 � �, stability

independent of �. A priori bound for critical spectrum:

� � 
� �

 	 � � � � 	 � 	 
 	 � 	 � � and

	 	 	 
 � � , where for

 � � � � � � �

� � � � � � � � �� � � � � � � 	 
 � �	 � �� � �� � � � � 	 
 � �	 � � � �.

Numerics: Dispersion relation as matrix eigenvalue problem

in


 �

:

� � � � �
�

 	 � 	 � �

. RDS in

 �

:

�
�

� 	 � � � 
 	 � 

�

� � 	 � �

.

Symmetry: Normalize eigenvector by

� �� 	 � 	 � � �

.

For numerics:

� 	 � � 
 � 	 � � �
with 	 � � 
 from previous step.

Initial points for RDS:
�

eigenvalue of linearized kinetics at 	 � �

.



Example for constant coefficients in the Oregonator:

	 � � �
� 	 � � � � 	 � � � 	 � � � 	 � � � � 	 � � � � � �

� � � �
� � � � � � � � � � 
 � � �
� � � 	 � � � � � �

� � � � � � � 	 � �
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� � � for periodic coefficients
Countably many, bounded curves (Bloch decomposition):

� � � � � � �� � � � � � � 	 � � 	 	 � �
�

� � � � � �
�

May contain isolated closed curves.

Recall dispersion relation:

� � �
� � � � � � � � � � � � � �
� � 	


 � � �

As BVP: � � � � � � �
� � � � � � � � � � � � � � � � 


, � 	 � �
�

� �

.

For RDS numerics solve linear and nonlinear in tandem:

	 � � � 
 � 	 � � �

� � � � � 
 � � 	 � � � � � � � � �
�

 	 � �

	 � � � � 	 � � �

� � � � � � � � �

fix phase:

� �� � 	 � � 	 � � 
 � 	 � � �

, fix eigenfunction:

� �� � � � � 
 � � � � �

.

Initial conditions e.g. from periodic case 	 � �

and discretization

(domain

� �
�

� �

!). For RDS 	 � is eigenfunction for

� � 	 � �

.



Example for periodic coefficients

A wave train in the Schnakenberg model (

� � �
�

� �

):

	 � � � 	 � � � �
�

� � � 	 � � �
�

�
� 	 � �

� � � �
�

� � � � � � � �
�

� � � � � � �
�

�

� � � 	 � �
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Testing stability

Constant:

Since connected, continue

� � 
� � � � � �

for all � in � 	 � �
�

� � � , find

initial points as matrix eigenvalues. Stable � � � � � � � � �
.

Periodic:

1. Stable near

� � �

, i.e. curve at zero has tangency into

� � � �

.

2. Stable for 	 � �

, i.e. on periodic domain

� �
�

� �

, find by

discretizing linear operator.

3. Same as for constant with analogous a priori bound. Can find

all �’s by Newton method.

Note: Need not compute curves of spectrum for this.



Meaning of the absolute spectrum

On bounded domain of length

�

, only point spectrum:

Convective vs. absolute instability :

(Assume stable point spectrum and stable ’resonance poles’ )

� �
� � � stable,

� � � � unstable: perturbations are convected through

the boundary.

� �
� � � unstable: Instability, perturbation grow pointwise if point in

�
� � � with zero group velocity is unstable.

As

� � � point spectrum ’clusters’ :

� For periodic b.c. at

� � � � , but separated b.c.: at

�
� � �.

� On




at part of

�
� � � if profiles shadow const./per. solution:

L L

Lin. spreading speed:

�
� � � � � � � � 
 
 � � �

and

�
� � � � � � � � � � � � � � � �

.



The absolute spectrum

Let

�

 be the spectrum of the travelling wave on

�
�
�
�

� �

with

separated boundary conditions.

�
� � � � � � � 	 �

is an accumulation point of

�

 as
� � � �

Assume

� � � � � � � � � � �

for

� � � � � � �. Take
� � �
� � � � � � � � � � .

Theorem [San.Sch.] Order

� � � � � � � � � � � � � � � � � � � � � , then

�
� � � � � � � � � �� � � � � � � � � � �� � � � � � � �� RDS,

� � � � � � � �
�

Simplest example: 	 � � � � 	 � � � 	 � � 	

�
� � � � � � � � � � � � �
�

� � �
	 � � � �

�
� � � � � � 
 � �

� �
	

�

� � � �
� � � � �
	 � 	 � � �

,


 	 � � � � � 


�

�
� � �



�



Absolute spectrum by continuation

Generalized abs. spec.

� �
� � �: � � �
� � � � � � � �
� � �

� � �

, � � � � � � 
 	.
Six real equations, seven unknowns � curves, continue e.g. in 	.

Write as coupled

eigenvalue problems

	 � � � � � � � �
� � � � 	 ��

� � � � � � 
 	�
Regularize � � � � �

( 	 � � 	, 	 � � 	 � 
 	 �)

	 � � � � � � �
� � � 	 �

� � � � � � � �
�

� � � 
 	 � � � � 	

Normalize:

� �� � 	 � � 
 � 	 � � �

,

� �� � � � 	 � � 
 � � � 	 � � � � 
 � � 
 	 � � � � � � 
 � � �

.

Initial points: ’branch points’ 	 � �

, i.e.

� � �
� � � � �
	

� � �
� � � � �

.

Continue

� � � � � � � �
�

to zero... not systematic for periodic case.



Structure of absolute spectrum

Constant case:

Theorem [San.Sch.R.]

�
� � � is a connected set in

� �
, i.e. stable �

�
� � � � 
 � �
�

� � � � �

. RDS:

� �
� � � � � � � � 	 � � 	 � �
�

� � �
� � �

� � �
�

� �

, i.e.

can start at branch points (compute from resultant) to get al l.

Periodic case:

Theorem [R.] Interior of (regular) isolated curves of

� � � � contain

� �
� � �. Such curves in the boundary of the most unstable connected

component of

� � � � � � contain

�
� � �, i.e. then

�
� � � disconnected set.



Schnakenberg example revisited

Essential spectrum in region about origin:
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Schnakenberg example revisited
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Testing stability

Constant:

Since connected, continue

� � 
� � � � � �

for all � in � 	 � �
�

� � � , find

these as matrix eigenvalues. Stable � � � � � �� � � � � � � � �� � � � .

Periodic:

No systematic test known...

Do not know how to locate branch points...

(Sufficient for instability is isola in left half plane and mo st

unstable component of

� � � � � �.)



Instability thresholds in Gray-Scott model

� � � �
�

� � � � � � � � � � 	 � �

� 	 � � �
�

� � � 	 � � � �
� 	 � 	 � �
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FitzHugh-Nagumo equations

	 � � 	 � � � � 	 � � � � 	 � 	 �
� � � 	 � � �

� � � � � � � � � � � � � � 	 � 	 � � �

0.0020
0.0023

0.0025
0.0028

0.0030
0.0033

0.0035
0.0038

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0. 0.5 1.

0.

1.

c

ε

slow

fast

u

200100



Fold of FHN wave train

At fold point real eigenvalue for periodic domain

� �
�

� �

crosses:

0.00330 0.00340 0.00350 0.00360 0.00370 0.00380

-0.010

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

slow

fast

Re(  )λ

ε

But on




have the whole essential spectrum!



FHN instability on via isolas

1. Two separated isola, one at origin and

� � � � � 
 �

2. Both isola merge in figure eight shape

3. Combined isola flips into unstable half plane before fold point :

side-band instability .

4. At fold point: two points with vertical tangent touch at or igin

5. Isola split into two, both in unstable half plane
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Instability onset on : tangency coefficient

The tangency coefficient

�
� �

changes sign: onset occurs

at zero wave number .
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Computed via

�
� � �


 �
�


 	
�

�
�

	 � � �

�
� � � �


 � �
�


 	 �
�

�
�

	 � � :

� �
� � � � � �
� � �
�

� � �
�

�
�
� � �

� �
� � � � � � �
� � �
� �

� � � �
�

�
�
� � �
�

� �
� �

� �



The complex Ginzburg–Landau equation

� � � � � � 
 �
� �
� � � �
�

� � � 
 � � � 	 � 	 �
has periodic wave-trains

�
� � � �

� � � � 
 � � � with �
�

� �
� �

�
and

� � � � � � �

� � �
�

. In detuned variable

� �
� � � 
 � � � CGL with c.c.

like RDS for

� � �

with constant coefficients:

� � �
� � � �

˛

˛

˛

˛

˛

˛

˛

˛

� � 	 
 � � � 

� 	 � 
 � 
 � �
� � 	 
 � � �
�

�

�

�
� � 	 
 � � �
�

�
� � 	 
 � � �
� � �

�

 � � � 

�

�
� 
 � 
 � �
� �

�

 � � �
�

�

�

˛

˛

˛

˛

˛

˛

˛

˛

Recall ordering

� � � � � � � � � � � � � � � . Here:

� � � � � � � � � � � � � � �
� � �.



CGL absolute spectrum

Benjamin-Feir unstable: � � �
�

,

� � �

, � � �
�
�

�
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�
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:

�
� � �



CGL absolute spectrum

Magnify one of the critical regions:
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There is no branch point in the absolute spectrum �

Cannot determine instability by looking at branch points al one!
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