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Lecture 5: Image Restoration

BE 244: Biomedical Image Analysis

Original slides by Tracy McKnight, modified by Piotr Habas, UCSF, 2009

Enhancement vs. Restoration

o Same goal:

improve image in some predefined sense

o Image enhancement

• Subjective process

• Heuristic procedures

• Example: contrast stretching

o Image restoration

• Objective process

• Criterion for image goodness

• Example: removal of image blur
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Image Degradation

o g(x,y) = H[f(x,y)] + (x,y)

• f(x,y): original input image

• H(): degradation function

• (x,y): additive noise

• g(x,y): degraded output image

f(x,y) g(x,y)

(x,y)

H +
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Image Restoration

o Given g(x,y) and some a priori information about H and 

(x,y), obtain an estimate f’(x,y) of the original image

o We want the estimate f’(x,y) to be as close as possible 

to the original input image f(x,y)

o The more we know about H and the closer f’(x,y) will 

be to f(x,y)

f(x,y) g(x,y)

(x,y)

H + ? f’(x,y)
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Noise Probability Density Functions

o Noise is introduced into 

images during the 

acquisition and/or 

transmission processes

o Noise can be correlated 

or uncorrelated with 

spatial coordinates
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Noise PDFs

o Gaussian Noise

• “Normal” noise distribution

• Electronic or sensor noise

• Common noise model – often 

abused
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o Rayleigh Noise

• Useful for histogram analysis of 

images with significant 

background component (ie

skewed)
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Noise PDFs

oUniform Noise

2

ba

12

2

2 ab

otherwise               0

for       
1

)(
bza

abzp

otherwise           0

for          

for          

)( b

a

bzP

azP

zp

o Impulse Noise

• “Bipolar” , “Salt-and-Pepper”, 

“Shot”, or “Spike”  noise

• Impulses can be negative or 

positive and are typically at 

saturation levels
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Noise PDFs
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Noise PDFs

9Original slides by Tracy McKnight, modified by Piotr Habas, UCSF, 2009

Noise Estimation

o Noise characteristics may be estimated from the Fourier spectrum 

of an image

• Periodic (spatially correlated) noise will appear as frequency spikes

o Characteristics may be empirically derived for a given acquistion

system by imaging a flat (typically all black) environment

o Regions of interest in existing images may also be used to 

characterize noise
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Noise reduction

o Mean filters

• Arithmetic mean filter

• Geometric mean filter

• Harmonic mean filter (salt noise, Gaussian noise)

o Order-statistics filters

• Median filter (salt and pepper noise)

• Min filter (salt noise)

• Max filter (pepper noise)

• Midpoint filter (uniform noise, Gaussian noise)
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Image Degradation

o H is linear

H[k1f1(x,y) + k2f2(x,y)] = k1H[f1(x,y)] + k2H[f2(x,y)]

and position-invariant

H[f(x - ,y - )] = g(x - ,y - )

o Spatial domain

g(x,y) = h(x,y) * f(x,y) + (x,y)

o Frequency domain

G(u,v) = H(u,v) F(u,v) + N(u,v)
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Image Degradation, example

*=

h(x,y)g(x,y) f(x,y)= *
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Image Restoration

o Estimation of degradation function H

• Image observation, Hs(u,v) = Gs(u,v) / Fs’(u,v)

• Experimentation

• Mathematical modeling

o Direct inverse filtering

F’(u,v) = G(u,v) / H(u,v)

f’(x,y) = F-1 [F’(u,v)] = F--1 [G(u,v) / H(u,v)]
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Image Restoration, example

f’(x,y)
f(x,y) restored with the inverse 

filter50 100 150 200 250
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f(x,y) g(x,y)
f(x,y) blurred with a 7x7 mean 

filter
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Inverse Filtering, problems

o F’(u,v) = G(u,v) / H(u,v)

F’(u,v) = F(u,v) + N(u,v) / H(u,v)

F(u,v) = F’(u,v) - N(u,v) / H(u,v)

N(u,v) = ?

o H(u,v) small -> N(u,v) / H(u,v) large

may dominate the estimate F’(u,v)

we need to limit the analysis to frequencies near the 

origin H(0,0)
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Wiener Filter

o For g = Hf + n

o Also called “least squares filter” because it minimizes 

2 = E{[f(u,v) - f’(u,v)]}

o For S (u,v) = 0 => inverse filter

o For “white noise” Sn(u,v) => constant
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Wiener Filter

wiener(gn)

gn = Hf + ng = Hff

inverse(g) inverse(gn)
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