Lecture 5: Image Restoration

BE 244: Biomedical Image Analysis

Enhancement vs. Restoration

Same goal:
improve image in some predefined sense
Image enhancement
Subjective process
Heuristic procedures
Example: contrast stretching
Image restoration
Objective process
Criterion for image goodness
Example: removal of image blur

Image Degradation

g(x.y) = HIf(x,y)] + n(x.y)
f(x,y): original input image
H(): degradation function
1n(x,y): additive noise

g(x,y): degraded output image
n(x.y)
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Image Restoration

Given g(x,y) and some a priori information about H and
n(x,y), obtain an estimate f(x,y) of the original image

We want the estimate f(x,y) to be as close as possible
to the original input image f(x,y)

The more we know about H and n the closer f'(x,y) will
be to f(x,y)
n(x.y)
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Noise Probability Density Functions

Noise is introduced into
images during the
acquisition and/or
transmission processes
Noise can be correlated
or uncorrelated with
spatial coordinates

Noise PDFs
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images with significant
background component (ie
skewed)




Noise PDFs

Uniform Noise
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“Bipolar” , “Salt-and-Pepper”, ot = 6-a’
“Shot”, or “Spike” noise 12

Impulses can be negative or
positive and are typically at
saturation levels

Noise PDFs

FIGURE 5.4 Lmsges usd histograms fesulting from sddins Gaussian, Rayleigh, sad gamma noise 10 the image
in Fiw 5.

Noise PDFs
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Noise Estimation

Noise characteristics may be estimated from the Fourier spectrum
of an image

Periodic (spatially correlated) noise will appear as frequency spikes
Characteristics may be empirically derived for a given acquistion
system by imaging a flat (typically all black) environment
Regions of interest in existing images may also be used to
characterize noise

ing small strips (shown as inserts) from () the Caussian, () the Raylcigh,
Fie. 84,

Noise reduction

Mean filters

Arithmetic mean filter

Geometric mean filter

Harmonic mean filter (salt noise, Gaussian noise)
Order-statistics filters

Median filter (salt and pepper noise)

Min filter (salt noise)

Max filter (pepper noise)

Midpoint filter (uniform noise, Gaussian noise)

Image Degradation

His linear

HIkf1 () + Kofo(x,y)] = ky HIF, (X,Y)] + KoH[f5(x,y)]
and position-invariant

HIf(x - oy - B)] = g(x - ay - B)

Spatial domain

g(x.y) = h(x.y) * f(x,y) + n(x.y)

Frequency domain

G(u,v) = H(u,v) F(u,v) + N(u,v)




Image Degradation, example

g(x.y) = hixy) *

f(x.y)

Image Restoration

Estimation of degradation function H
Image observation, Hq(u,v) = G4(u,v) / F'(u,v)
Experimentation

Mathematical modeling

Direct inverse filtering
F’(u,v) = G(u,v) / H(u,v)
f(x,y) = #L [F'(u,v)] = #1 [G(u,v) / H(u,V)]

Image Restoration, example

f(x.y) g(x.y)

filter

f(xy)

f(x,y) blurred with a 7x7 mean  f(x,y) restored with the inverse

filter

Inverse Filtering, problems

F’(u,v) = G(u,v) / H(u,v)

F’(u,v) = F(u,v) + N(u,v) / H(u,v)
F(u,v) = F'(u,v) - N(u,v) / H(u,v)
N(u,v) =?

H(u,v) small -> N(u,v) / H(u,v) large
may dominate the estimate F’(u,v)

we need to limit the analysis to frequencies near the
origin H(0,0)

Wiener Filter

Forg =Hf+n
1 [H(u,v) P

5 G(u,v)
H(UY) [H(u,v)[ +S,uv)/S (u,v)

F'(uv)=

S, (u,v) =| N(u,v) "= noise power spectrum
S, (u,v) = F(u,v) ’=original image power spectrum

Also called “least squares filter” because it minimizes
62 = E{[f(u,V) - F(uV)]}
For S, (u,v) = 0 => inverse filter

For “white noise” S,(u,v) => constant

Wiener Filter

f g =Hf

inverse(g) inverse(gn) wiener(gn)




