
© Copyright 2024

Xiang Li

1



Agile Data Recording Architecture for Complex Scientific
Simulations

Xiang Li

A report

submitted in partial fulfillment of the

requirements for the degree of

Master of Science in Computer Science and Software Engineering

University of Washington
2024

Reading Committee:

Michael Stiber, Chair
Dong Si, Committee Member

Afra Mashhadi, Committee Member

Program Authorized to Offer Degree:
Master of Science in Computer Science & Software Engineering



University of Washington

Abstract
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Chair Michael Stiber

Computer Science and Engineering

Simulation development and eScience are driven by the complex questions that scientists and en-

gineers want to answer. A simulation-driven or eScience investigation is an iterative process — as

answers are found, new questions are created. Consequently, the development of simulation and

eScience software involves rapid iteration, and the data that investigators want to capture from such

software frequently changes.

Traditionally, new simulation data characteristics require development of new software modules

or modification of existing ones to facilitate the recording of the updated data. This brings two

disadvantages. First, scientists and engineers must invest significant time and resources into under-

standing and addressing data recording nuances with each iteration of their investigation. Second,

the procedures developed during each iteration are of limited use in the next. This is particularly

problematic in large-scale projects that involve various simulations, where managing multiple data

recording systems becomes a significant overhead. To address these issues, we have developed

a flexible and scalable data recording architecture that supports a wide range of simulations and



data types. This architecture was realized by redesigning the data recording subsystem within the

Graphitti simulator, and we assessed the flexibility and reusability of this redesigned system by

evaluating the lines of code (LOC) and examining its maintainability. We observed a complete

elimination of lines of code (a reduction of 100 percent) in the updated data recording subsystem

compared to the old one, specifically in the context of recording various new variables within exist-

ing simulations. This result shows that new architecture significantly reduces development needs

for saving and updating simulation data across different simulation projects, as well as modifying

variables within existing simulation models. Additionally, we demonstrate that this approach can

easily record more data types with minimal changes (2 lines of code), thus broadening its ability

to support additional fundamental data types that were not previously accommodated by the data

recording subsystem. Overall, our new lightweight data-recording architecture met our project goal

of supporting various simulations without requiring the development of additional software.
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Chapter 1

Introduction

Scientific simulators are critical tools that replicate and model the behavior of complex systems

and phenomena [1, 2]. They enable the study of natural processes, hypothesis testing, and the

prediction of real-world problems through simulations [3, 4]. In order to meet the evolving de-

mands of scientific research, simulators cannot be constrained to a specific use case. Instead, a

modern simulator needs to have general use simulation capability [5, 6, 7]. This flexibility allows

the simulators to adapt to different research contexts and accommodate new simulations, thus sav-

ing developers time and effort. Additionally, as science and technology advances and problems

become more complex, new simulation models may become available for use in existing fields. In

both scenarios, it is essential for simulators to quickly update and record simulation data with new

characteristics while maintaining flexibility and adaptability. However, traditionally, the change

of data recording requirement requires the development of additional software modules or mod-

ification of existing ones. A specific simulation data recording system often can’t be reused by

other simulation projects. This is time and resource consuming also makes the simulator complex

and inflexible. Consequently, this becomes a major problem for large scale simulator projects that
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involves many simulation models.

1.1 Project Motivation

In response to the evolving demand for general use simulators that can handle a wide range of

problems, Graphitti, an open-source high-performance graph-based event simulator, emerges as a

versatile solution [8]. Graphitti is designed to be more than just a simulator for a single problem; it

is designed to simulate multiple categories of problems, providing a flexible and adaptable platform

for various graph-based network simulations [7].

However, Graphitti’s adaptability is significantly constrained by the limitation of its current data

recording system, the Recorder subsystem. This subsystem struggles to efficiently accommodate/-

manage new data types or adapt to changes. Consequently, every new simulation domain and every

new simulation type within a domain requires adding (sometimes substantial) specialized code to

record that simulation’s data, leading to a slow, cumbersome, and inefficient process. Such ineffi-

ciency limits Graphitti’s adaptability and usability, presenting a critical need to reengineering the

Recorder subsystem.

1.2 Project Goal and Scope

This project is to design an agile data recording architecture for Graphitti Recorder subsystem.

As an illustrated example figure 1.1 highlights the difference between the existing approach and

our proposed new design. When integrating new simulation models, instead of creating specific

simulation model data recording component for each simulation, this re-engineered Graphitti data

recording component serves as a general use Recorder for different simulation models in Graphitti.

With this more adaptable and scalable Recorder subsystem, Graphitti can become a more versatile

tool to support the evolving demands of the scientific research without the need for repetitive,
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Figure 1.1: The difference between the existing approach and proposed new design illustrating the
simplified data recording architecture in Graphitti

specialized code modification. This re-engineered architecture aims to streamline the integration

of new simulations, thus enhancing Graphitti’s overall maintainability and utility.

The objectives are:

• Design a flexible Recorder Interface: Implement a flexible and simple Recorder interface

that can effortlessly manage a wide array of data types and adapt to various simulations

without requiring additional software modules.

• Efficient Management of Simulation Data: Implement data structures and recording tech-

niques capable of automatically managing the dynamic nature of simulation data. This will

streamline the process of adding new simulations and modifying existing ones, eliminating

the need for extensive custom coding.

• Cross-Disciplinary Reusability: Design the system for scalability, ensuring it can easily

evolve with and support emerging simulations. This data recording architecture is built for

cross-disciplinary reusability, making it applicable and supportive in diverse scientific re-

search areas.

The scope of this project is focused on the Recorder subsystem’s architecture to addresses Graphitti’s

Recorder key weaknesses. To accomplish the project objectives, this scope of the work plan in-
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cludes:

• Redesign of the Graphitti Recorder Subsystem Architecture: The project started with a

analysis of the current Recorder subsystem to identify its limitations. The key part of this

project is to reengineer the Recorder’s architecture, emphasizing modularization to boost the

system’s adaptability and ease of maintenance [9]. The focus is on the reduction of code

complexity for recording diverse variables and standardizing the data reordering procedure.

• Implementation with Existing Models Across Various Scientific Domains: An impor-

tant aspect of this project is ensuring the newly designed Recorder subsystem seamlessly

integrates with Graphitti’s existing simulation models. This includes neural networks sim-

ulations of the Growth (Neural Growth) model , Spike-timing-dependent plasticity (STDP)

model, and the Next-Generation 911 (NG911) emergency response network model. [10]

[11] [12] This phase aims to show the Recorder’s capability to support many different real-

world simulation scenarios without requiring extensive customizations or modifications in

the codebase.

• Validation Effort Reduction in New Data Recording: We use quantified metrics to show

the decrease in complexity and effort required to accommodate new and varied simulation

data. This involves measuring the reduction in lines of code (LOC), [13, 14] assessing main-

tenance improvement, and analyzing the ease of integrating additional data formats or simu-

lation variables. We also use workflow comparisons as measurement of improvement in how

the Recorder manages the recording, processing, and storage of simulation data.

The Recorder design project significantly benefits researchers and developers by enhancing the

system’s adaptability and efficiency. Researchers gain from the system’s ability to accommodate

diverse recording needs and the ease of using the same recording procedures in different simulation

projects, which streamlines the research process. For developers, the project shortens the develop-
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ment cycle, simplifies use and allows for straightforward adaptations to new requirements. This

redesigned approach ensures the Recorder system effectively supports the needs of both research

and development activities, emphasizing practicality and programmer-friendly design.

The new Recorder is intended for general use and could work in use cases outside the Graphitti sim-

ulations. In potential future work, the Recorder could be independent from Graphitti and become

a stand-alone data Recording package.

1.3 Document Roadmap

This paper is organized in the following manner: following the introduction chapter, the subsequent

chapter covers the theoretical background and the methodology for reengineering the Recorder sub-

system. Chapter 3 examines the existing Recorder subsystem architecture and workflow within the

Graphitti framework to point out its limitations and constraints. Chapter 4 and 5 detail the plan-

ning, design, implementation consideration for the new Recorder subsystem, including redesigned

architecture and workflow, optimization techniques and testing strategies. The result chapter eval-

uates the improvements of the reengineered Recorder subsystem through system metrics. The final

chapter summarizes the project achievements and explores future research opportunities.
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Chapter 2

Background

This chapter lays the groundwork for understanding the reengineering tasks of Graphitti’s Recorder

system, focusing on essential concepts and technologies. This chapter aims to provide a founda-

tional grasp of key C++ techniques, modern software development practices, all of which are key

elements of this project.

2.1 Template and Instantiation Relationship

Templates in C++ offer a versatile approach to create functions and classes that are capable of

working with diverse data types. This flexibility allows the implementation of algorithms and data

structures without specifying the exact data type beforehand. This adaptability is pivotal in our

project, particularly in constructing a Recorder system for Graphitti that accommodates a range of

data types encountered in complex simulations.

To use templates in a C++ project, we can define a class or function with parameters representing

types (template <typename T>) or non-type values (template <int N>). The actual
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types or values are then specified when using the template, allowing the code to be instantiated for

specific data types or values. This method treats data as an unknown entity, introducing types only

during actual usage. The instantiation relationship is one of C++ relationships and it exists if entity

A is an instance of template B [15]. Instantiation relationship refers to the connection between

a generic template and specific instances created using that template with particular data types or

values.

Using templates in the Recorder Subsystem in Graphitti that is adaptable to various data types en-

countered in complex simulation brings several advantages. Firstly, templates facilitate code reuse,

as a single template class or function can be used with various data types without the need for

redundant implementations. This promotes maintainability and reduces the possibility of errors

introduced by duplicating code. Additionally, templates promote type safety by enabling the com-

piler to perform type checking at compile time. This helps catch type-related errors early in the

development process, leading to more robust and reliable software. However, it’s essential to ac-

knowledge the potential downsides. Complex template programming can introduce challenges in

understanding and debugging, and there may be an increase in executable code size due to template

instantiation for different types. Therefore, in designing the Recorder Subsystem, if we use tem-

plate classes and functions, careful consideration is necessary to balance the benefits of flexibility

and code reuse against potential complexities and code size implications.

2.2 C++17 Feature

While templates offer versatility, we have explored additional C++17 features in this project1. In

this project, we use a new C++17 feature, std::variant, which is capable of handling different

variable types [16].
1Enabled by MSCSSE student Divya Kamath’s MS project, in which she modernized the Graphitti code base to

C++17.
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2.2.1 Feature std::variant

In C++17, std::variant, as a new versatile feature, is a type-agnostic container that can hold

a single value of any type, offering flexibility in scenarios where the exact type is unknown at

compile time. The simplicity of std::variant lies in its ability to accommodate a broad range

of types without the need for explicit template parameters, encapsulating the ability to store one of

several specific types at a time as a type-safe union. The std::variant keeps track of the type

of value it currently holds, providing a safer and more controlled way to work with various data.

The basic syntax involves specifying the potential types the variant can hold within angle brackets.

For example:

s t d : : v a r i a n t < i n t , double , char > myVar ian t ;

myVar ian t = 4 2 ; / / a s s i g n i n g an i n t

s t d : : c o u t << s t d : : ge t < i n t >( myVar ian t ) << s t d : : e n d l ;

myVar ian t = 3 . 1 4 ; / / a s s i g n i n g a d ou b l e

s t d : : c o u t << s t d : : ge t <double >( myVar ian t ) << s t d : : e n d l ;

In this code example, myVariant is a variant that can hold values of types int, double, or

char. The std::get() function is used to retrieve the value of a specific type from the variant.

The specific advantages of std::variant include its commitment to type safety, as it keeps

track of the type currently held. This is particularly useful in scenarios where a variable’s type

may change, and the specific type needs to be handled at run time. The performance benefits of

std::variant are notable, as it avoids the overhead associated with type-erasure and dynamic

polymorphism, providing an efficient alternative for storing and processing different data types

within the simulation system. Ease of use is enhanced by a robust set of helper functions, such as

std::get(), simplifying the process of accessing held values and applying operations.
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2.2.2 The Case for std::variant

Choosing std::variant in the simulation recording system is a strategic decision driven by

task-specific requirements. std::variant is selected for its type-safe storage and return of di-

verse data types through a single function/class. This eliminates the need for runtime type checking

and casting, ensuring the data type returned is always correct and supported, which significantly

reduces the risk of type-related errors and enhances system reliability.

In the Graphitti framework, which manages various data types including integers, floating-point

numbers, and custom structs, std::variant streamlines data handling. It allows for the support

of multiple data types through a single method or interface, thus improving the Recorder subsys-

tem’s adaptability to different simulation requirements. The explicit nature of std::variant

in declaring supported data types improves code readability and maintainability, allowing devel-

opers to easily identify the data types handled by the system without reviewing implementation

details. Another significant advantage of adopting std::variant is the future-proofing of the

Recorder subsystem. It simplifies the addition of new data types to the system without modifying

the method’s interface or its data processing logic. This capability ensures the Recorder remains

versatile and meet future simulation demands effortlessly.

2.3 Reengineering Software Architectures

Reengineering software architectures involves a systematic approach to transform an existing soft-

ware system in a way that reconstitutes its structure and design to improve its maintainability, ex-

tensibility, efficiency, functionality, or better alignment with current needs or future needs. [17, 18]

There are many key principles that guide software reengineering. The first principle is under-

standing the existing system. Comprehensive analysis and documentation of the current system’s

architecture are crucial. It provides insight into the system’s strengths and limitations and identifies
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the components that require reengineering [19]. Second, it is important to define clear objectives

to the project. These could include improving system performance, scalability, maintainability,

or adapting to new technological standards. The third principle is choosing to use incremental or

Big Bang approach for the reengineering process. An incremental approach modifies the system

piece by piece, while a Big Bang approach replaces or significantly reworks large portions of the

system at once [20]. Here, the initial plan is to use the Big Bang approach, but in later development

this project switches to the incremental development approach. The next principle is to preserve

functionality during reengineering the system. The core functionality of the original system should

be preserved to the greatest extent possible. Reengineering should enhance the system without

sacrificing the features that users depend on [21]. Lastly, ensuring quality and reliability of new

systems is an important principle [22]. Reengineering should pass rigorous testing to ensure that

the new architecture is reliable and that the transition does not introduce new issues.

In the context of the Graphitti project, reengineering the Recorder subsystem means:

• Assessing Current Recorder Limitations: Identifying the limitations of the current Recorder

architecture which includes inflexibility, complexity, and the inability to easily adapt to new

types of simulator or simulation data.

• Modular Design: Creating a modular design that separates concerns, making the Recorder

system more adaptable and easier to modify or extend [23, 24].

• Leveraging Modern C++ Features: Utilizing advanced C++17 features [16] to introduce

type safety and flexibility into the Recorder subsystem.

• Testing and Validation: Ensuring that the reengineered Recorder retains all necessary func-

tionalities and integrates well with other subsystems without introducing new issues.

When reengineering the Recorder subsystem within Graphitti, there are several considerations:
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• Backward Compatibility: Ensuring the new system is compatible with existing data and

simulation models to prevent disruption to ongoing work.

• Validation and Documentation: The project is broken into a list of smaller subtasks. Updat-

ing documentation and providing testing and validation for each subtask facilitates a smooth

transition to the new system.

• Planning for the Future: Anticipating future needs and technological advancements to

ensure the continued usefulness of the reengineered architecture.

18



Chapter 3

Related Work

This chapter provides an overview of the Graphitti simulator and its various subsystems, which is

important for understanding the architecture of the Recorder subsystem and the role of the Recorder

subsystem within the larger Graphitti simulation framework.

3.1 Graphtti and its Subsystems

BrainGrid [25] is a specialized biological neural network simulator developed in the Intelligent

Networks Lab under the guidance of the University of Washington Bothell, Professor Michael

Stiber. Graphitti, the successor of BrainGrid, aims to serve as an open-source, versatile, high-

performance simulator supporting various graph-based network simulations [7]. Graphitti extends

the capabilities of BrainGrid beyond the Neural Growth model and the STDP model [10]. Graphitti

retains existing neural network simulation capabilities and can also be adapted for additional graph

based network simulation tasks, such as 911 emergency response systems. The 911 application

is the first non-neural network simulation to be developed using Graphitti. The Graphitti NG911

application represents the emergency response network as a graph-based network, demonstrating
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Graphitti’s versatility as a multidisciplinary simulator [12].

Graphitti has six core subsystems:

1. Core Subsystem: The Core subsystem orchestrates the simulation’s execution. It manages

the simulation across discrete time intervals, termed epochs. Within each epoch, it updates

the states of vertices and edges, leveraging data from the Layout and Connections subsys-

tems. Additionally, the Core subsystem uses the Recorder to log the network’s state and

behavior during each epoch.

2. Layout Subsystem: This subsystem is responsible for managing the spatial arrangement and

structural attributes of the network. It oversees the Vertices subclass, detailing individual

vertex characteristics separately from the overall network structure. This includes managing

2D coordinates and other spatial properties of vertices within the graph.

3. Connections Subsystem: Tasked with defining the network’s connectivity, this subsystem

interprets specifications from the input configuration file. It maintains and updates the state

of edge connections, outlines network topologies, and modifies connections as the simulation

progresses. This subsystem also governs the Edges subclass, differentiating edge properties

from their behavior within the simulation.

4. Vertices Subsystem: This subsystem focuses on individual vertices, the primary units within

the graph. It manages their distinct properties and states, such as type, coordinates, and

current state, playing a critical role in the emergent behavior of the overall system.

5. Edges Subsystem: Representing connections between vertices, edges in Graphitti can exhibit

various attributes like weight and directional orientation. The Edges subsystem is tasked

with creating, modifying, and managing these edges, thus shaping the network’s topology

and interaction dynamics.
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6. Recorder Subsystem: Integral to documenting the simulation process, this subsystem cap-

tures and stores both the results and intermediate states of the simulation. It records various

aspects such as vertex location and edge weight. These recorded variables are associated

with the Layout subsystem, Connections subsystem, Vertices subsystem and Edges subsys-

tem. In the subsequent sections, we refer to classes that contain the recorded variable as the

variable owner classes.

Graphitti’s modular architecture, with its distinct interdependent subsystems, establishes a robust

framework for simulating complex graph-based networks. Given the project’s focus on enhanc-

ing the Recorder subsystem, we can simplify Graphitti’s workflow by grouping these subsystems

based on functionality: Recorder and Simulation Components. The Simulation components con-

tain variable owner classes (encompassing Layouts, Connections, Vertices, and Edges) and Core.

This grouping clarifies the roles and interactions.

3.2 The Recorder’s Role in Graphitti Simulations

By reviewing the Graphitti workflow, we can see how the Recorder subsystem interacts with other

subsystems and records simulation results. This workflow includes three phases:

Phase 1: Initialization and Configuration

• The initialization stage sets up the simulation environment, creating object instances and

configuring simulation components.

• A Simulator class object is instantiated, which then creates a Model object appropriate for

the simulation mode (CPU or GPU).

• The Model object oversees the instantiation of Edges, Vertices, Layout, Connections, and

Recorder objects through their respective factory classes.
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• Layout and Connections classes guide the creation of vertices and edges, with Layout gen-

erating vertex maps and Connections establishing edges between vertices using deserialized

data if provided.

Phase 2: Simulation Execution and Recording (During simulation)

• Vertices and Edges are updated at every time step.

• Graph Modifications: Between epochs, the graph may undergo modifications based on the

Connections class in use, such as creating or destroying edges or adjusting weights.

• Recorder Interactions: following a static recording configuration, the Recorder interacts stat-

ically with other subsystems:

– Simulation Components: Components such as Vertices, Edges, or any other entities

involved in the simulation expose/public certain variables that are relevant for record-

ing. The accessibility of these variables is determined during the initialization phase,

ensuring that the Recorder knows what data is available for recording.

– Recording Process: The parameters of what is recorded (specific variables from vari-

able owner classes) are all defined upfront. The Recorder accesses the variables in the

variable owner classes and continuously captures the updated simulation data.

• Recording Procedure Difference: XmlRecorder Versus HDF5Recorder

– XmlRecorder: This approach is straightforward. It accumulates all recorded data in

memory during the simulation. Only after the simulation completes, it writes them to

a file.

– HDF5Recorder: It writes data directly to an Hierarchical Data Format version 5

(HDF5) file as the simulation progresses. It doesn’t require holding large volumes of

data in memory before writing it to a file.
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Phase 3: Termination and Output

• As the simulation concludes, the Core subsystem instructs the Simulator to clean up re-

sources, leading to an shutdown of the program.

3.3 Graphitti Recorder Subsystem Architecture

To better understand the Recorder subsystem’s role in Graphitti, it is also necessary to examine

the subsystem’s functionality and architecture. The Graphitti Recorder subsystem is responsible

for managing simulation results according to the requirements of specific simulations. This may

include recording the state of vertices and edges in the graph, the numbers of vertices, and capturing

network level metrics. In particular, these tasks include: identify recorded variables, collect data,

possibly perform desired computations on the fly, based on requirements from the scientists, then

output the result to the output file. The existing Recorder subsystem architecture is displayed in

Figure 3.1.

The original Recorder subsystem contained the following classes:

• IRecorder: This is a foundational interface that is common to all Recorder classes

within the system.

• RecorderFactory: This is a classic example of the Factory Design Pattern, a creation

pattern in software engineering. The RecorderFactory creates instances of concrete

Recorder classes at run time, depending on the current simulation’s configuration.

• Specific Concrete Classes: Each of these classes extends the IRecorder interface to record

different variables from different models into either Extensible Markup Language (XML) or

Hierarchical Data Format version 5 (HDF5) data formats:

1. Concrete Recorder Classes for neural network Simulation: In the neural do-
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Figure 3.1: Graphitti Recorder subsystem UML diagram showing its hierarchical structure design
with neural network and NG911 simulation models

main, there are two models that are extended: Neural Growth model and STDP

model. To record the data from Growth model, HDF5GrowthRecorder and

XmlGrowthRecorder are added. The XmlSTDPRecorder is added for STDP

model results (no HDF5GrowthRecorder has yet been written — a good exam-

ple of the impact of software development overhead on scieitific investigations). Each

class caters to different aspects of neural simulation, capturing the simulation result

for analysis and further processing. These concrete classes record data by hard cod-

ing the variables and computations to collect and save that data during simulation.

XmlRecorder and HDF5Recorder records the neuron’s layout, spikes history and

compile history information. They can output network wide spike counts in 10ms

bins. XmlGrowthRecorder and HDF5GrowthRecorder record the neuron’s ra-

dius history in every epoch. XmlSTDPRecorder and HDF5STDPRecorder record

neurons’ weight histories.
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2. Concrete Recorder Classes for NG911 Simulation: Since the NG911 is not fully imple-

mented yet, currently it only includes the XmlNG911Recorder. Similar to the neural

network simulation Recorders, this class specifically caters to NG911 simulations. It

inherits from the IRecorder interface, ensuring consistency in the data recording

process across different simulation types.

3.4 Problems in the Current Recorder Subsystem

The existing Graphitti Recorder implementation has several limitations, primarily stemming from

its specificity to each simulation type. When integrating a new graph-based simulation into Graphitti,

the addition of concrete Recorder classes derived from the Recorder interface is required. Over

time, this approach has increased the complexity of the Recorder subsystem. Furthermore, the cur-

rent Recorder design lacks flexibility to adapt to new computation requirements. Even for simula-

tions of the same type, the need to add new Recorder classes for saving distinct variables of interest

poses a significant inflexibility. This not only involves adding new concrete classes but also re-

quires changes and effort to the input file, Factory class, and variable owner classes. Moreover,

to enable Recorder classes to access member variables, the design requires making these variables

public or establishing friendships between variable owner classes and the Recorder, which could

lead to tighter coupling and reduced encapsulation.

These identified limitations highlight inherent design flaws in the current Recorder subsystem:

• Overloaded Responsibilities: The Recorder currently has multiple responsibilities. On one

hand, it captures simulation data, and on the other, it manages the data based on specific

use case requirements. This includes identifying interest variables, evaluating the need for

additional computation, and defining how to store the required data in the appropriate format.

• Lack of Isolation: The Recorder subsystem is not isolated from other components in the
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Graphitti framework. Consequently, adapting Graphitti for new simulation types requires

simultaneous modifications to both the Recorder subsystem and related components.

• Steep Learning Curve: Modifying the Recorder demands a deep understanding of the com-

putation aspects of recorded variables in different simulations. This is a challenging, partic-

ularly when the developer lacks familiarity with the specific scientific domain, preventing

agile development.
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Chapter 4

Methods

System change proposals drive system evolution. These proposals may be based on existing re-

quirements that have not been implemented, requests for new requirements, and new ideas for

software improvement from the system development team [26].

The existing Recorder architecture doesn’t fulfill the needs of our current project and future require-

ments. As a result, we need to propose changes and redesign the Graphitti Recorder subsystem.

In this chapter, we address the main design aspects of a new Graphitti Recorder subsystem. Ini-

tially, we examine the updated requirements for the Recorder. Then we explain the tasks for the

new Recorder. Following this, we provide details about the architecture of the newly implemented

Recorder subsystem. Finally we cover the Graphitti simulation workflow with the new Recorder

subsystem.
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4.1 Requirements and Tasks Analysis

The Graphitti framework is built to handle complex, graph-based network simulations. However,

the current Recorder subsystem, which is crucial for capturing and storing simulation data, has

struggled to keep pace with the Graphitti’s broader vision of versatility and adaptability. Its limita-

tions—rigid design, complexity in integrating new simulation types, and a steep learning curve for

modifications—highlight a mismatch with the agile and generic aspirations of Graphitti. Recogniz-

ing these challenges, we started a strategic redesign of the Recorder subsystem to ensure that it can

meets the evolving needs of diverse simulations. The redesign focuses on three key requirements

essential for transforming the Recorder into a subsystem that matches the vision of Graphitti as a

general use platform for network simulation:

• Broad Compatibility for Variable Recording: At the heart of the redesign is the need for

a Recorder that effortlessly captures a wide variety of data types across different simulation

scenarios. This means creating a system that can support not only current simulations like

neural networks or emergency response networks but also future simulation use cases. The

Recorder will support an extensive range of data types and formats, making it a versatile tool

for researchers and developers working on many different simulation projects.

• Built-in Extensibility for New Simulations: As scientific research progresses, so do the

requirements for simulation frameworks. The new Recorder is designed with the future in

mind, offering easy ways to add new types of simulations, variables, and data output formats.

This built-in flexibility ensures that the Graphitti framework can grow and adapt without the

need for constant overhauls, making it a lasting solution for the scientific community.

• Quick and User-Friendly Data Acquisition: A key goal for the redesigned Recorder is

to make it as programmer-friendly and efficient as possible. It will have the capability to

quickly gather data from different parts of the Graphitti system. This agility makes it easier
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for users to collect the data they need, when they need it, enhancing the practicality and

effectiveness of their simulation studies.

By focusing on these three requirements, the redesigned Recorder subsystem aims to resolve the

existing challenges and unlock new possibilities for the Graphitti framework. This chapter outlines

our approach to create a Recorder that is not only more compatible and extensible but also simpler

to use.

4.2 A Task-Based Approach

Based on the refined requirements analysis, we identified some important tasks for the new Recorder

subsystem in the Graphitti framework (more detailed explanation of each task will be provided in

Chapter 5). Here is the approach to each task:

• Streamlined Recording Architecture: Design a more efficient recording architecture con-

sisting of versatile classes so that only one class must be written for each file type. Currently,

our Recorder only targets two file formats: XML and HDF5. This simplified architecture

will reduce complexity and improve the overall performance of the Recorder. If there is a

new file format required in the further development, a concrete class can be easily derived

from the Recorder interface.

• Migration of Variable Registration: Move the task of registering variables out of the

Recorder subsystem. Instead, variable registration will be performed in the relevant sim-

ulation components, specifically in the classes that own the variables to be recorded. This

approach will distribute the responsibility and improve the overall organization of the system.

• Design of a Generic Variable Interface: Design a common generic interface that can be

used for all types of variables, enabling the Recorder to easily adapt to different simulation
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scenarios. The newly introduced std::variant, a type-safe union in C++17, will be used

in the implementation of this interface. Initially, the plan was to create a Recordable tem-

plate. However, considering the need for developers to instantiate templates for each specific

variable type in the Recorder classes, the module was redesigned. A RecordableBase

interface was introduced, along with a Recordable template as the base class for recorded

variables.

• Creation of a Variable Information Table: The new Recorder design uses composite,

not inheritance. Instead of creating concrete Recorder subclasses, the Recorder adds a new

variable element to a variable table in the existing Recorder class when a new variable needs

to be recorded. We developed this Variable Information Table within the Recorder classes to

store all the necessary information about the variables to be recorded. Each element in this

table includes the variable name, its address, an internal buffer for data accumulation, the

base type and other necessary metadata. By iterating through this table, the simulator is able

to record all the required variable information.

4.3 The New Recorder Subsystem Architecture

To address the limitations and issues identified in the existing Recorder subsystem, We redesigned

the Recorder subsystem architecture. Fig 4.1 shows the updated Graphitti Recorder subsystem

UML diagram.

Here’s a breakdown of the key components:

There are two interfaces:

• Recorder: The IRecorder interface in the old Recorder has been changed to Recorder,

to be consistent with interface names in Graphitti’s other subsystems. It serves as the base
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Figure 4.1: Redesigned Graphitti Recorder subsystem UML diagram
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class for the recording mechanism, maintaining a list (variableTable) of variables that need

to be recorded. It outlines methods essential for the recording process, such as capturing data

and saving the data.

• RecordableBase: This interface defines methods and properties that make an object

capable of being recorded.

There are several other important classes:

• VariableInfo: This struct is defined in Recorder to hold common variable information

and attributes for a single variable to be recorded, such as variable reference, variable name,

the basic type and the update frequency of this variable.

• Recordable<T>: A template class derived from RecordableBase interface, designed

to handle variables of any type (T). This class makes it possible to record variables of differ-

ent data types while using a common interface.

• XMLRecorder: A concrete class that implements the Recorder interface and handles the

recording of data into XML files.

• HDF5Recorder: Another concrete class that also implements the Recorder interface and

records data into HDF5 file formats.

• RecorderFactory: This class is responsible for creating instances of the two Recorder

classes (XMLRecorder and HDF5Recorder). It uses the Factory design pattern to in-

stantiate objects without specifying the exact class of the object that will be created until run

time.

As the diagram (Fig 4.1) outlines, the redesigned, lightweight Recorder system contains only two

types of Recorders — XmlRecorder and HDF5Recorder— created via a RecorderFactory.

The latest Recorder subsystem introduces a Recordable variable module, enhancing its ability to
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uniformly manage and integrate diverse variables and recording methods. The new design allows

developers to concentrate on simulation essentials rather than recording tasks. The use of inter-

faces implies that the system is designed for extensibility and polymorphism, allowing for new

types of Recorders in addition to XmlRecorder and HDF5Recorder without modifying the

core system structure in the future.

4.4 Detailed Workflow Analysis of the Redesigned Recorder Subsys-

tem

The Recorder subsystem’s operational workflow, as depicted in the sequence diagram in Fig. 4.2,

gives us a step by step look at how the new Recorder subsystem keeps track of variables during

the simulation. It shows the complex interactions between SimulationComponent, Recorder, and

RecordableBase.

This diagram is broken into distinct phases: variable registration, data capture during simulation

epochs, and data saving.

1. Setting Up (Variable Registration): Operation begins when a part of the simulation, the Sim-

ulationComponent, informs the Recorder of what to record. It gives the Recorder all the

details including variable name, address, type, and (optionally) update frequency. This is

how the Recorder receives the key information and organizes it into an internal table. Within

this process, the Recorder may interact with the RecordableBase to determine the data

type of the variable being registered. This is done through the getDataType() method,

which returns a string representation of the variable’s type.

2. During the Simulation (Simulation Epoch Loop): The diagram shows that as the simulation

goes on, for dynamical variables, their data has been updated in each epoch. Every time
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Figure 4.2: Redesigned Graphitti Recorder subsystem sequential diagram
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there is a changes, the SimulationComponent updates this information. Then, the Recorder

iterates its variable table and checks each variable’s updates through interactions with the

RecordableBase. It uses a special method, getElement(index) to retrieve the current

value of the variable. This method returns a variant that encapsulates the primitive data. This

variant can hold various types (such uint64_t, BGFLOAT, int, bool), demonstrating

the system’s ability to handle various data types. This process ensures that the Recorder is

always up-to-date with the latest information.

3. Wrapping Up (Data Capture and Saving): After the simulation ends, the Recorder first cap-

tures the data for constant variables — things that don’t change. This is done by retrieving

the variable’s value using the same getElement(index) method. Then, it extracts val-

ues from the variant based on their type and saves all this information by outputting data

from an internal buffer into a file. This step is crucial because it moves the data from the

Recorder’s memory to a file.
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Chapter 5

Implementation and Testing

In this section, we describe the implementation details, discussing specific issues and the opti-

mization efforts. We start with key implementation elements. Subsequently, we cover how we

implemented those key elements.

The class diagram in Fig. 5.1 presents the relevant elements, their relationships, and the important

functionalities within the simulation recording system, illustrating a more focused view of the

interactions and data management strategies involved.

5.1 Migration of Variable Registration

To enhance flexibility and establish a more logical structure for the Graphitti Recorder subsystem,

a significant change is proposed: transferring the responsibility for variable registration from the

Recorder subsystem to specific simulation components, particularly the variable owner classes.

The previous approach, where the Recorder subsystem manages variable registration, lacks flexi-

bility and is not developer-friendly. Additionally, this method requires owner classes to make their
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Figure 5.1: Redesigned Graphitti Recorder Classes diagram illustrating the structured approach to
record data
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variables public for Recorder access, which is not ideal for data encapsulation. By allowing each

simulation component to independently register its variables, the system becomes clearer, more

adaptable, and better organized. Simulation components, familiar with their variables, can now

customize and register them according to specific needs, thereby introducing agility to manage var-

ious and diverse scenarios and making the system more adaptable and easier to understand. Con-

sequently, developers can focus on variable owner classes without the need to navigate Recorder

component complexities. Moreover, this shift ensures enhanced data protection by allowing vari-

ables to remain private within their owner classes.

The diagram 5.2 illustrates the variable registration process in the updated Graphitti Recorder sub-

system. The updated Recorder introduces a registerVariable method to facilitate the reg-

istration of variables. When a variable owner class decides to record a variable in its class, it simply

invokes this Recorder method, providing the necessary variable information. The registerVariable

function is designed with function overloading so that the Recorder can handle diverse registration

requirements efficiently. The variable owner class calls the registerVariable in its setUp

method, just after memory has been allocated for the Recordable variable. This ensures that the

Recorder subsystem is aware of the existence of the variable and will properly handle recording and

storage during the simulation. Essentially, the new Recorder allows variable registration by letting

the variable owner class communicate its intent through the registerVariable method, and

the Recorder stores the received variables in a table, handles the storage and output automatically

to a file in a generic manner.

This revised methodology ensures that the registration of variables is closely tied to the context

in which these simulation variables are used, creating a more modular and easy-to-maintain sys-

tem. This decentralization makes the system more adaptable to various simulation scenarios and

simplifies the development process.

38



Figure 5.2: Redesigned Graphitti Recorder subsystem illustrating the variable registration process
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5.2 Recordable Component Design

During the reengineering process, initial stages often include exploring various design patterns

and implementations. Analyzing each design pattern and comparing them with metrics helps guide

decision making [26]. In the development of the Graphitti Recorder subsystem, an important design

decision is the base class for recorded variables, which involve a diversity of data types and data

structures during simulation recording. We expected it to simplify the handling of complex data

within a single framework, thereby minimizing code duplication and enhancing maintainability.

Various variable types for possible simulations demand a unified recording approach so that the

Recorder can automatically process these different variable types in the same way. We considered

two main design approaches: 1) employing a Recordable template directly within the Recorder,

or 2) using an abstract RecordableBase interface alongside Recordable templates. We

made the decision based on these criteria: code duplication, performance, and extensibility.

5.2.1 Two Approaches Comparison

To provide a concrete analysis, we utilized the existing neural network simulation scenario, focus-

ing on recording spike events of vertices within the XMLRecorder class. This scenario served as

a benchmark to compare the two design options across various metrics. The assessment included

performance evaluation, measured by build and runtime across three different sizes of output files

(categorized as tiny, small, and medium). Additionally, we provide some code snippets to examine

code duplication in each design approach, and evaluate extensibility by estimating the effort (in

lines of code) needed to incorporate a new basic data type into the Recorder. Table 5.1 lists the

results of the comparison when implementing these two options within the XmlRecorder class

when simulator records spike history in a neural network simulation.

Table 5.1 shows that the approach utilizing the Recordable template has a slightly higher run-
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Table 5.1: Performance and Code Comparison of the two Recordable Component Design Ap-
proaches in the XmlRecorder

Approach Build Time (sec-
onds) Run Time (seconds)

— Tiny (24K) Small (292K)
Medium
(1.5M)

Template 0.2837 6.401 56.469 282.945
Interface 0.2759 6.323 55.796 279.138
Reduction
(%) 2.7% 1.2% 1.2% 1.3%

time performance cost compared to the approach that employs the RecordableBase interface.

Additionally, the compilation time for the simulation program is longer when using the template-

based approach, mainly due to the necessity of type checking for each basic data type at compile

time.

To clear explain the design ideas and highlight the distinctions between the two approaches in the

implementation of the new Recorder subsystem, we provide illustrative and simplified code snip-

pets. These snippets illustrate how the Recordable template and RecordableBase interface

are utilized in the XmlRecorder class respectively, although they are simplified for explanation

purpose and not directly what the implementation in the XmlRecorder class.

Considering the Recorder supports two basic data type, int and BGFLOAT:

• Recordable Template Utilization: The approach has to maintains separate variable tables

and implement overloaded registerVariable functions for each basic data type. It

also needs additional function templates for each virtual function within the XmlRecorder

since C++ forbids virtual template functions. This design complicates the code base, espe-

cially when integrating new data types, potentially conflicting with principles of code sta-

bility and extensibility. This approach has lower maintainbility due to repetitive code for

similar operations.
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/ / / R e c o r d a b l e Templa te u t i l i z e d i n t h e XmlRecorder :

/ / / a v a r i a b l e t a b l e wi th b a s i c d a t a t y p e BGFLOAT f o r r e c o r d i n g .

v e c t o r < s i n g l e V a r i a b l e I n f o <BGFLOAT>> variableTableBGLOAT_ ;

/ / / a v a r i a b l e t a b l e wi th b a s i c d a t a t y p e i n t f o r r e c o r d i n g .

v e c t o r < s i n g l e V a r i a b l e I n f o < i n t >> v a r i a b l e T a b l e I n t _ ;

/ / / add more v a r i a b l e t a b l e s i f need .

/ / / . . . . . . . .

/ / / V a r i a b l e owner c l a s s e s c a l l i t and p a s s v a r i a b l e s wi th i n t t y p e t h r o u g h

R e c o r d e r i n t e r f a c e

/ / / r e c e i v e d a r e g i s t e r e d v a r i a b l e and add i t t o t h e v a r i a b l e t a b l e

/ / Over load f o r i n t t y p e v a r i a b l e s

v i r t u a l vo id r e g i s t e r V a r i a b l e ( c o n s t s t r i n g &varName , Recordab le < i n t > &

r e c o r d V a r ) {

v a r i a b l e T a b l e I n t _ . push_back ( s i n g l e V a r i a b l e I n f o < i n t >( varName , r e c o r d V a r ) )

;

}

/ / Over load f o r BGFLOAT t y p e v a r i a b l e s

v i r t u a l vo id r e g i s t e r V a r i a b l e ( c o n s t s t r i n g &varName , Recordab le <BGFLOAT> &

r e c o r d V a r ) {

variableTableBGLOAT_ . push_back ( s i n g l e V a r i a b l e I n f o <BGFLOAT>( varName ,

r e c o r d V a r ) ) ;

}

/ / / add more o v e r l o a d e d r e g i s t e r V a r i a b l e f u n c t i o n i f need .

/ / / . . . . . . . .

/ / / c a p t u r e v a r i a b l e h i s t o r y i n f o r m a t i o n i n e v e r y epoch and a c c u m u l a t e d a t a

v i r t u a l vo id c o m p i l e H i s t o r i e s ( ) o v e r r i d e
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{

c o m p i l e H i s t o r i e d T e m p l a t e ( v a r i a b l e T a b l e I n t _ ) ;

c o m p i l e H i s t o r i e d T e m p l a t e ( variableTableBGFLOAT_ ) ;

/ / . . . . . . add when new t a b l e c r e a t e d

}

/ / / t h i s t e m p l a t e implemen t s t h e c o m p i l e H i s t o r i e s f u n c t i o n .

/ / / c a p t u r e a l l i n f o r m a t i o n f o r each v a r i a b l e t a b l e

t empla te <typename T>

void c o m p i l e H i s t o r i e s T e m p l a t e ( v e c t o r < s i n g l e V a r i a b l e I n f o <T>> &t a b l e ) {

f o r ( i n t rowIndex = 0 ; rowIndex < t a b l e . s i z e ( ) ; rowIndex ++) {

i f ( t a b l e [ rowIndex ] . v a r i a b l e L o c a t i o n _ −> g e t S i z e I n E p o c h ( ) > 0) {

f o r ( i n t columnIndex = 0 ;

co lumnIndex < t a b l e [ rowIndex ] . v a r i a b l e L o c a t i o n _ −> g e t S i z e I n E p o c h ( )

;

co lumnIndex ++) {

t a b l e [ rowIndex ] . v a r i a b l e H i s t o r y _ . push_back (

( * ( t a b l e [ rowIndex ] . v a r i a b l e L o c a t i o n _ ) ) [ co lumnIndex ]

) ;

}

}

t a b l e [ rowIndex ] . v a r i a b l e L o c a t i o n _ −> s ta r tNewEpoch ( ) ;

}

}

• RecordableBase Interface Utilization: This unified approach introduce feature std::variant

to streamline the handling of a list of possible data types. It allows for a singular vari-

able table and a single registerVariable function supporting variables of various

basic data types through the RecordableBase interface. The virtual functions in the

XmlRecorder class do not require extra template functions since common functionalities
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are abstracted in the interface. The duplicated code in the XmlRecorder class are entirely

eliminated when using this approach. When considering extensibility, new types can be

simply added to variant(only 1 line of code). This simplification minimize the potential for

errors, increase code maintainability and makes extending support for new basic data type

more straightforward. As changes to common behavior are centralized, the design has higher

maintainability.

/ / / R e c o r d a b l e B a s e I n t e r f a c e u t i l i z e d i n t h e XmlRecorder :

/ / / s u p p o r t a l i s t o f b a s i c d a t a t y p e s : i n t , BGFLOAT / / add more i f need

us ing m u l t i p l e T y p e s = v a r i a n t < i n t , BGFLOAT>;

/ / / a s i n g l e v a r i a b l e t a b l e s u p p o r t d i f f e r e n t b a s i c d a t a t y p e

v e c t o r < s i n g l e X m l V a r i a b l e I n f o > v a r i a b l e T a b l e _ ;

/ / / r e c e i v e d a r e g i s t e r e d v a r i a b l e and add i t t o t h e v a r i a b l e t a b l e

v i r t u a l vo id r e g i s t e r V a r i a b l e ( c o n s t s t r i n g &varName , R e c o r d a b l e B a s e &

r e c o r d V a r ) {

v a r i a b l e T a b l e _ . push_back ( s i n g l e V a r i a b l e I n f o ( varName , r e c o r d V a r ) ) ;

}

/ / / c a p t u r e v a r i a b l e h i s t o r y i n f o r m a t i o n i n e v e r y epoch and a c c u m u l a t e d a t a

void c o m p i l e H i s t o r i e s ( ) {

f o r ( i n t rowIndex = 0 ; rowIndex < v a r i a b l e T a b l e _ . s i z e ( ) ; rowIndex ++) {

. . . . . .

v a r i a b l e T a b l e _ [ rowIndex ] . v a r i a b l e L o c a t i o n _ −> s ta r tNewEpoch ( ) ;

}

}
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Table 5.2: Enhanced Maintainability and Extensibility through a comparative analysis of the two
Recordable design approaches in the XmlRecorder

Metric Recordable Template RecordableBase inter-
face

Performance
Cost

High
Slightly low due to abstrac-
tion

Code Duplica-
tion

High Low

Extensibility Limited High
Maintenance More complex Simplified

5.2.2 Decistion Rationale

Table 5.1 and code example presents a comparison between two approaches to recording data in a

simulation system: using a Recordable Template directly versus using a RecordableBase

interface. The comparison spans four key metrics: performance, code duplication, extensibility,

and maintenance.

After a thorough comparison (Table 5.2), the decision to adopt the RecordableBase interface

alongside Recordable templates has been chosen in the Recorder system. This decision is based

on multiple considerations, including a slight enhancement in performance, improved maintain-

ability, a reduction in code duplication, and increased system extensibility (potential expansions in

variable type).

5.3 Testing Principles and Strategies

In the development of the Recorder subsystem project, a foundational testing principle was adopted

through comprehensive unit and regression testing. This approach was essential in validating the

functionality and correctness of the newly designed components within the Graphitti simulation

environment. Emphasis was placed on creating a suite of tests that could cover a wide range of
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scenarios, from the simplest variable recording to complex, dynamic simulation states. This testing

framework aimed to not only catch and correct immediate errors but also ensure that any changes

to the codebase would not accidentally introduce regressions or disrupt existing functionalities.

For unit testing, particularly the Recorder class, the Google Test framework was employed due to

its comprehensive set of features and ease of integration with C++ projects. Testing the Recorder

class presented unique challenges, notably in simulating diverse simulation states and variable

updates to verify the accuracy and efficiency of the recording process. A significant challenge was

ensuring the Recorder accurately captured and stored variable states across different data types and

structures. The solution involved adding an extra set of testing methods such as constructor, getter

methods, crafting mock objects and simulation components to feed a controlled set of data and

updates to the Recorder, thereby isolating the Recorder’s functionality for precise verification. This

method facilitated the validation of the Recorder’s behavior in a variety of simulated conditions,

enhancing the reliability of the tests and the robustness of the Recorder implementation.

The transition to the new Recorder system introduced specific challenges in regression testing,

especially given the alterations in data processing and output formats. The old Recorder system

processed compiled data with additional computations, a requirement that was eliminated in the

new design to streamline data handling. To validate the new Recorder’s output against the legacy

system, a methodical approach was taken by comparing the unprocessed raw data from the old

Recorder against the formatted output of the new system. Despite the disparities in output for-

mat—where the old system presented a unified view of spike history data and the new system

offered segmented, neuron-specific data chunks—a detailed comparison of corresponding numeri-

cal data was conducted. This comparison was carefully executed to ensure accuracy in the recorded

data, despite the structural differences in output. For constant variables, such as vertex’s locations,

where data and format remained unchanged, direct comparisons were straightforward, serving as

a benchmark for the reliability of the new system. This rigorous testing strategy was instrumental
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in confirming the new Recorder’s capability to accurately capture and represent simulation data,

bridging the gap between new efficiencies and legacy accuracy.
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Chapter 6

Results

This chapter evaluates how well the redesign aligns with the expected outcomes. It first illustrates

the Recorder subsystem’s workflow change within the simulation. Then it quantifies the impact of

re-engineering on the codebase by comparing the Lines of Code between the old and new Recorder

subsystems that were implemented for different simulation models, demonstrating reusability of the

redesigned Recorder subsystem. Later, this chapter covers the assessment of qualitative aspects,

focusing on extensibility and maintainability.

6.1 Evolution of the Recorder Subsystem in Graphitti: Overall Com-

parison

To illustrate the changes, Table 6.1 compares key aspects of the old and new Recorder subsystem

designs across three operational phases: 1) Initialization and Configuration, 2) Simulation Execu-

tion and Recording, and 3) Termination and Output.

As we can see from the comparison, the redesigned Recorder subsystem enhances the Graphitti
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Table 6.1: A Comparison of Recording Simulation Variables Before and After the Recorder Update

Phase Aspect Before Update After Update
1 Class Utiliza-

tion for Vari-
ables/Simula-
tions

Required separate concrete classes
for each variable and simulation
type, leading to increased com-
plexity.

Implements a RecorderFactory
pattern, minimizing changes for
new integrations with only two
core concrete classes, regardless
of simulation type.

1 Variable Reg-
istration Pro-
cess

Utilized a dedicated configuration
file for recording setup, necessitat-
ing hard-coded variables.

Enables direct variable registra-
tion by variable owner classes,
eliminating the need for a separate
recording configuration file.

2 Handling
Different Data
Types

Each new data type or recording
need required adding new classes,
making the system rigid.

Utilizes a generic interface with
std::variant for flexible han-
dling of various data types, avoid-
ing the need for multiple specific
data members.

2 Adaptability
to Simulation
Use Cases

Limited by a static recording con-
figuration, reducing adaptability.

Adopts a universal protocol,
streamlining the recording work-
flow for various use cases.

3 Data Output
and Storage

Required hardcoded specifications
for variables to store and output,
leading to a lack of flexibility.

Automatically iterates through the
variable table, saving accumulated
data for each variable to a file, thus
enhancing flexibility and automa-
tion.
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simulation environment’s adaptability and maintainability. By transitioning from an inflexible,

use-case-specific framework to a more generalized, streamlined approach, the new Recorder sys-

tem significantly simplifies the simulation workflow. This transformation not only reduces the

complexity inherent in managing diverse data types and simulation scenarios but also aligns the

recording process more closely with many simulation use cases’ evolving needs. The introduc-

tion of direct variable registration by owner classes, coupled with a flexible recording strategy that

can accommodate changes easily, ensures that the Recorder subsystem can better support the re-

quirements of various scientific research and analysis. This redesign observes the agile principle,

ensuring that the Recorder subsystem can respond to the evolving demands of complex simulations

quickly.

6.2 Metrics

6.2.1 Quantitative Measures

In evaluating the Graphitti Recorder subsystem’s improvement, the Source Lines of Code (SLOC)

metric, also referred to as Lines of code (LOC), plays a crucial role. SLOC helps assess the system’s

maintainability and development effort by quantifying the codebase size [13]. This quantitative

measure assesses the improvements brought by the updated Recorder subsystem across different

simulation models within Graphitti, including Neural Growth model and STDP model, and the

NG911 simulation model.

We compared four use cases. The first use case, adding variables to record, is a very common need

in simulation research. The second and third use cases are about recording data when Graphitti

is extending model coverage in the existing neural network domain. The last use case is about

recording data when Graphtti expands to a new research domain.

Table 6.2 presents a comparative analysis of the lines of code required inside the Recorder subsys-
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Table 6.2: Enhanced Maintainability and Reusability through a Comparative Analysis of the Lines
of Code Required for Recording Simulation Variables Before and After the System Updated

Use Case Variable Data Format Old
Recorder(line)

Updated
Recorder(line)

Adding variables to
record

Spike, ver-
tex location

XML + HDF5 71 0

Extending a Neural
Growth Model

Radii XML + HDF5 191 0

Extending the STDP
Model

Weight XML 119 0

New NG911 simulation Vertex Type XML 63 0

tem for recording simulation variables before and after the system redesign. Please note that the

table only counts the relevant lines of code within the Recorder subsystem; therefore, the lowest

possible number of lines is 0 if the function call code resides in another subsystem. The improve-

ment of the redesigned Graphitti Recorder subsystem is demonstrated through three key simulation

scenarios, showcasing its enhanced efficiency and flexibility:

1. Adding a new variable to record using an existing Recorder class:

• Before the update, developers needed to configure and hard code the recording process

for new variables, resulting in additional lines of code.

• In the redesigned subsystem, adding new variables like "Spike History" or "Vertex

Location" no longer requires extra coding in the Recorder subsystem, leading to a 100%

reduction in coding effort on the Recorder subsystem.

2. Creating a new concrete Recorder class for registering variables of new simulations:

• Previously, developers needed to add over 100 lines of code for each new simulation

model, leading to unnecessary time and effort.

• The redesigned subsystem simplifies this process by streamlining complex coding tasks
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into a single function call within variable owner classes, such as ConnGrowth, thereby

enhancing the system’s capacity to handle diverse data types effortlessly on the Recorder

subsystem.

3. Integration of the NG911 simulation into the new Recorder architecture:

• Previously, integrating NG911 simulation variables required substantial coding efforts

and "hack code" to fit the older Recorder subsystem.

• With the new Recorder, integration is seamless, requiring no additional lines of code

in the updated Recorder subsystem, and simplifying the process for developers, high-

lighting the system’s adaptability.

This table illustrates a 100% reduction in lines of code (LOC) within the Recorder subsystem across

all scenarios, indicating the elimination of the need for additional coding. It’s also worth noting

that the redesigned Recorder no longer requires the creation of separate C++ files for each scenario.

The improvements in the redesigned Recorder subsystem go beyond just the significant reduction

in lines of code and the number of files. They minimize the effort needed to record simulation

variables, accommodating frequent updates to requirements—whether this involves adding new

variables for new simulations or altering variables within existing ones. With the updated subsys-

tem, the variable owner classes utilize a unified variable registration function to communicate with

Recorder without resorting to hardcoding, which significantly reduces coding efforts and enhances

the system’s adaptability. This shift towards a more streamlined and modular recording process

is in harmony with Graphitti’s objectives of enhanced flexibility, reusability, and a reduction in

coding workload. Moreover, it demonstrates that this redesigned Recorder can be utilized across

different simulation models, making Graphitti more versatile and adaptable, and simplifying the

entire process of integrating new simulations.
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6.2.2 Qualitative Analysis: Extensibility and Maintainability

In addition to the quantitative comparison detailed earlier, in this section we look at the qualitative

improvement.

First, in the scenario where further adaptation of the Recorder subsystem to accommodate new ba-

sic data types not currently supported, it takes significantly less time and effort due to the enhanced

extensibility. For example, the system currently handles various fundamental types including int,

uint64_t, BGFLOAT, and bool. Should there be a need to incorporate additional data types

like uint32_t for recording new simulation data, the process involves two simple steps. First,

expand the variant structure’s data type list to include uint32_t within the Recorder’s frame-

work. Second, modify how values are retrieved from the variant for data output purposes. These

straightforward changes can easily adapt the Recorder subsystem to evolving simulation require-

ments.

Second, in terms of maintainability, the redesigned Recorder subsystem has also seen improve-

ments. Firstly, the removal of hacky code, exemplified by the NG911 simulation, has contributed

to a cleaner and more streamlined codebase. The elimination of such ad-hoc solutions enhances the

overall maintainability of the system. Additionally, the reduction in the proliferation of Recorder

classes, as observed when adding new variables or simulations, represents a significant improve-

ment. In the old Recorder subsystem, the continuous addition of concrete classes for various

recording scenarios resulted in a complex and bulky structure. The redesign addresses this issue

by introducing a more unified and extensible approach, mitigating the challenges associated with

a growing number of Recorder classes. This streamlined design not only simplifies the addition of

new variables or simulations but also positively impacts the overall maintenance of the codebase,

ensuring a more efficient and manageable system.
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Chapter 7

Conclusion and Future Work

In this project, we present the process of redesigning a modern Recorder subsystem for Graphitti

to establish an agile and generic data recording architecture. This agile data recording architecture

enables the flexible recording of different variables across different simulation scenarios, address-

ing Graphitti’s complexity and inflexibility when it involves various simulation models. Our en-

hancements have streamlined simulation integration, automated data management, simplified data

collection, and provided effortless management of data types. This redesign results in dramatic

reduction in the lines of code required within the Recorder subsystem for adding new variables

or modifying existing ones in various simulation models. The 100% reduction in necessary lines

of code compared to the previous architecture demonstrates the success of transformation from a

domain specific recording subsystem to a reusable purpose subsystem. The redesign is not just

about fewer lines of code inside the redesigned Recorder subsystem, it also makes Graphitti more

adaptable and efficient, simplify the process of integrating new simulations or extending existing

simulations. Thereby the new design reduces the development burden on scientists and engineers.

Furthermore, our redesigned recording architecture demonstrates the ability to easily accommodate
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additional fundamental data types with minimal changes in code, thus expanding its capability to

support diverse simulation scenarios.

There are additional research opportunities. A key aspect of our future goals involves exploring

the feasibility of configuring the input file to specify which variables should be recorded. This

will allow the Recorder to automatically capture and store simulation data based on the provided

configuration, which contains variables of interest. This will make Graphitti more dynamic and re-

sponsive to simulation requirements. Another opportunity involves exploring the HDF5Recorder

implementation. As this project has primarily concentrated on the architectural design and imple-

mentation aspects of the XmlRecorder within the Recorder subsystem, the HDF5Recorder,

with its potential for handling large datasets more efficiently and its capability to support complex

data hierarchies, presents an interesting contrast to the XML-based recording approach. To sum

up, future efforts concerning the Graphitti Recorder subsystem should prioritize expanding its ca-

pabilities and optimizing performance so it can support the evolving needs of scientific simulations

even better.

The significance of this agile data recording architecture extends beyond its application in Graphitti

and the various graph-based simulation models; it also has the potential to function independently

from Graphitti. In future work, it could become a standalone data recording package, reusable

across different simulation projects and promoting cross-disciplinary usability. This architecture

provides researchers with a more adaptable and efficient platform, ideally suited for continuous

scientific exploration with less coding required. Its widespread applicability and possibility for

standalone operations encourages further exploration of its utility in diverse areas that require re-

liable data recording solutions. Moreover, the agility and flexibility of the agile data recording

architecture mean it is well-equipped to keep pace with the future progress of scientific simulation

technologies across a broad range of domains.
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Appendix A

Appendix Backward Compatibility

The redesigned data recording architecture allows the XmlRecorder class to seamlessly record

various variables with different data structures and types in the existing simulation models in

Graphitti. Since this design doesn’t require changing any code in other subsystems, compatibil-

ity issues within the Recorder subsystem are easily addressed.

The redesigned Recorder subsystem is capable of handling different data structures of existing vari-

ables. In the redesigned Graphitti Recorder subsystem, we’ve introduced a RecordableBase In-

terface and a Recordable Template that inherits from the interface, as part of the Recordable

component. These two classes serve as the base class for recording variables.

Three distinct data structures within the variable owner classes have been developed in Graphitti to

record different simulation variables:

1. EventBuffer: This data structure is used in Neural Network simulation models. It func-

tions as a circular array for queuing event time steps produced by vertices, encapsulating

vertex event buffering for events occurring in previous epochs.
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2. VertexMatrix: It is an self-allocating and de-allocating 1D array optimized for numerical

computations, recording static simulation variables like vertex locations.

3. Standard C++ STL vectors (Vector<int> or Vector<BGFLOAT>): These vectors with

different data types are used by simulation variables.

The objects of these data structure classes represent the simulation variables that need to be recorded.

Table A.1 outlines how these data structures are integrated into the Recordable component de-

sign. This table illustrates the adaptability of the redesigned Recorder’s architecture to diverse data

structures in existing simulation models, showing the backward compatibility of the reengineered

Recorder subsystem. Specifically, it showcases the implementation strategies for EventBuffer,

VertexMatrix, and standard C++ STL vectors. Through the RecordableBase, the system

now supports various simulation variables, thus demonstrating a move towards achieving a flexible

and robust recording mechanism in the Graphitti simulation framework.

Table A.1: Solutions for Adopting the Recordable Component Design with Different Data Struc-
tures in Graphitti

Data Structure Data Type Solution
EventBuffer uint64_t The EventBuffer class directly inherits from the

Recordable template (Instantiation relationship).
VertexMatrix BGFLOAT VertexMatrix has an interface Matrix. The

RecordableBase interface is added as the base
class of Matrix.

Vector<int> int RecordableVector template has multiple inher-
itance and it inherits from RecordableBase and
Vector.

Vector<BGFLOAT>BGFLOAT The RecordableVector template is directly uti-
lized by substituting the vector in the variable owner
class.

When implementing this RecordableBase interface, an analysis of the simulation variables

within the Recorder shows that the Recorder needs to extract three important pieces of information
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from each simulation variable. Firstly, it captures the variable’s value, which reflects the current

state or data at a particular moment in the simulation. The return type for this value is a variant

to allow flexible handling of multiple data types. Secondly, the Recorder determines the size of

data items within the variable, a crucial detail for gauging memory requirements and planning

storage allocation. Lastly, understanding the variable’s basic data type is essential, as it ensures the

recorded data can be stored, analyzed, and interpreted accurately.

The core of unified different simulation variable recording design lies in the RecordableBase

interface. Serving as a common contract, this interface outlines the essential methods that any

Recordable variable must implement. It introduces a standardized way for different variable types

to interact with the Recorder. In this RecordableBase interface, it introduces std:: variant to

provide flexibility in storing different types of data that a Recordable variable may have. By using

std::variant, the interface provides variables with different basic types such as integers or

float types to Recorder for storing. Additionally, the Recordable template class, derived from

RecordableBase, caters to the specifics of each variable type. This template embraces the di-

versity of data types, providing a unified Recordable interface tailored to the needs of EventBuffers,

Matrices, and beyond.

The redesigned Recorder subsystem is also capable of handling various variables with different

update frequencies. Some simulation variables are dynamic, with their values updated in each

simulation epoch. Beyond dynamic simulation data, we have identified another category of data in

existing simulations: constant simulation data. Our redesigned Recorder subsystem is equipped to

handle these two distinct types of simulation variables.

A significant change in the Recorder subsystem is the introduction of a variable table, which holds

a list of variables registered for recording. Each entry in this variable table contains important

information about the recorded variable, including its name, reference, update frequency (variable
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type), basic data type, and an internal buffer for accumulating data over time (for XmlRecorder).

The Recorder engages with this variable table in a two-phase process during simulation runs. The

first interaction with the table occurs during each epoch of the simulation run. The Recorder iterates

through the variable table, checking the update frequency (variable type) of each recorded variable.

For variables marked as Recorder::Dynamic, the Recorder captures the value stored in the

recorded variable that its reference or pointer points to and stores these values. The second iteration

happens at the end of the simulation, where the Recorder iterates through the variable table again.

In this iteration, if the variable is marked as Recorder::Constant, it first captures its value

and then outputs the data to its own buffer, subsequently outputting the simulation results to the

destination. If the variable is not marked as constant, meaning the data has already been captured,

it directly outputs the simulation results.

By organizing the variables in the variable table and capturing their values at appropriate intervals,

the Recorder subsystem efficiently records and outputs the simulation results.
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Appendix B

Appendix Data Storage: HDF5

HDF5 (Hierarchical Data Format version 5) [27] is a data format used to store and manage large

and extensive datasets in scientific research, which makes it an ideal choice when storing various

kinds of simulation data. Our project’s requirement to store large volumes of dynamic simulation

data efficiently has led us to choose HDF5 .

A significant change in the redesigned architecture ensures that each Recorder concrete class cor-

responds only to a file type. As a result, the updated Graphitti Recorder subsystem now supports

two types of Recorders: HDF5Recorder and XmlRecorder, and these two Recorder classes

can be reused by different simulations. The XmlRecorder saves data in a plain text file with a

“.xml” file extension, making it human-readable and easily processed and analyzed with other tools

or programming languages. Conversely, the HDF5Recorder saves data in a binary file format

using a “.h5” file extension.

There are notable differences in the recording procedure between these two Recorders in the pre-

vious version of the Recorder subsystem. The XmlRecorder captures all data in Vectors dur-

ing the simulation and writes them to an XML file once the simulation is complete, whereas the
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HDF5Recorder writes data directly to HDF5 library routines during the simulation, eliminating

the need to store the entire dataset in memory at once.

As a result of those differences, when reengineering the updated architecture for the HDF5Recorder,

specific implementation details require attention. For dynamic variables, the XmlRecorder cap-

tures the stored value in the recorded variable and places it in its container using a Vector<std::variant>

at appropriate intervals, allowing it to accumulate data over time. After the simulation concludes,

the XmlRecorder outputs all accumulated data at once. In contrast, the HDF5Recorder oper-

ates differently: each variable is stored as a Dataset (since an HDF5 file comprises a list of groups

or Datasets, each being a multidimensional array of values of the same type). In the variable table

design, each variable entity contains a Dataset named after the variable. The HDF5Recorder

captures and stores data for dynamic variables in the Dataset associated with each variable. Since

the Dataset is extendable, the HDF5Recorder does not need to accumulate data.

Given the specific requirements for the XmlRecorder and HDF5Recorder, including unique

elements like Dataset for HDF5 and vector<std::variant> for XML, a single common base structure

might not fully address the distinct needs of each Recorder type. However, we can design a com-

mon base that supports shared attributes while also accommodates the specialized needs of each

derived Recorder class. Figure 5.1 outlines some common elements of each variable table entity,

baseVariableInfo, for both the XmlRecorder and HDF5Recorder classes.

We have designed an agile data recording architecture for Graphitti, and although the design phase

is complete, so far we have only implemented the XML Recorder component. Future work includes

developing and integrating the HDF5 Recorder implementation, thereby completing the envisioned

enhancements to the Graphitti simulation framework and ensuring comprehensive support for di-

verse data recording needs.
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