
©Copyright 2024

Jardi A. Martinez Jordan

Graph-based Modeling and Simulation of

Emergency Services Communication Systems

Jardi A. Martinez Jordan

A thesis

submitted in partial fulfillment of the

requirements for the degree of

Master of Science

University of Washington

2024

Reading Committee:

Michael Stiber, Chair

Munehiro Fukuda

Johnny Lin

Program Authorized to Offer Degree:

Computing and Software Systems

University of Washington

Abstract

Graph-based Modeling and Simulation of
Emergency Services Communication Systems

Jardi A. Martinez Jordan

Chair of the Supervisory Committee:
Ph.D. Michael Stiber

Computing and Software Systems

Emergency Services Communication Systems (ESCS) are evolving into Internet Protocol

(IP)-based communication networks, promising enhancements to their function, availability,

and resilience. This increase in complexity and cyber-attack surface demands a better un-

derstanding of these systems’ breakdown dynamics under extreme circumstances. Existing

ESCS research largely overlooks simulation and the little work that exists focuses primarily

on specific cybersecurity threats and neglects critical factors such as the non-stationarity of

call arrivals. This paper introduces a robust, adaptable graph-based simulation framework

and essential mathematical models for ESCS simulation. The framework uses a graph repre-

sentation of ESCS networks where each vertex is a communicating finite-state machine that

exchanges messages along edges and whose behavior is governed by a discrete event queuing

model. Call arrival burstiness and its connection to emergency incidents are modeled through

a cluster point process. The model applicability is demonstrated through simulations of the

Seattle Police Department ESCS. Ongoing work is developing GPU implementations of these

models and exploring the use of simulations in cybersecurity tabletop exercises.

TABLE OF CONTENTS

Page

List of Figures . iii

Glossary . iv

Chapter 1: Introduction . 1

1.1 Contributions . 2

1.2 Overview . 3

Chapter 2: Background: Emergency Services Communication Systems (ESCSes) . 4

2.1 History of 911: Keeping up With Technology 5

2.2 Next Generation 911 . 7

2.3 The 911 Response Process . 9

Chapter 3: Literature Review . 14

Chapter 4: Method: ESCS Domain Architecture 16

4.1 Structure: ESCS as Graph-Based Systems 16

4.2 Behavior: Discrete Events Queueing Model 19

4.3 Interactions: Communicating Finite State Machines 20

4.4 Graphitti Implementation . 22

Chapter 5: Method: ESCS Mathematical Models 38

5.1 Call Arrival as Realization of a Spatio-Temporal Cluster Point Process . . . 38

5.2 Call Abandonment . 40

5.3 Redial . 42

5.4 Service Time . 43

5.5 Responder Dispatch and Response Time . 43

5.6 Dealing with Outliers in Exponential Distributions 44

i

Chapter 6: Results . 46

6.1 Models Verification . 46

6.2 Illustrative Application . 48

Chapter 7: Conclusion . 55

7.1 Architectural Framework . 55

7.2 Mathematical Models . 55

7.3 Retrospective . 56

7.4 Future Work . 56

Appendix A: Verification of small 911 simulation output 66

ii

LIST OF FIGURES

Figure Number Page

2.1 The 911 System call routing . 10

2.2 The NG911 System call routing . 11

2.3 911 call handling and dispatching flow chart 12

4.1 Service boundaries of the State of Washington’s PSAPs 18

4.2 Call center as a queuing system . 20

4.3 Illustration of vertices communication . 22

4.4 911 Communication Finite State Machines 23

4.5 Graphitti’s Component Diagram . 28

4.6 Communication Phase Flow Diagram . 32

4.7 Caller Region Flow Diagram . 34

4.8 Public Safety Answering Point (PSAP) Flow Diagram 36

4.9 Responder Flow Diagram . 37

6.1 Call arrival rate impact on system utilization 50

6.2 Impact of the number of servers on system utilization 52

6.3 Real Seattle PD vs. Small 911 simulation wait time 53

iii

GLOSSARY

ALI: Automatic Location Information. System used to identify the physical location of
a caller in real-time.

ANI: Automatic Number Identification. Technology use to automatically determine a
call’s originating phone number.

CALLER REGION: In this thesis, a caller region represents a geographical area where
emergency calls originate.

CAD: Computed-aided Dispatch. System that assists first responders in efficiently pro-
viding emergency services.

CFSM: Communicating Finite-state Machine. Finite State Machine (FSM) with opera-
tions to receive and send messages.

DDOS: Distributed Denial of Service. Cyber-attack intended to disrupt services provided
by a host within a network.

EENA: European Emergency Number Association. European homologue of the National
Emergency Number Association (NENA).

EMS: Emergency Medical Services. Emergency services that provide on-site treatment
for medical emergencies and transportation to emergency medical facilities.

ESCS: Emergency Services Communication System.

ESN: Emergency Service Number. Code assigned to each line of the MSAG.

FCC: Federal Communications Commission. Federal entity that regulates interstate and
international communications by radio, television, wire, satellite, and cable.

FIRST RESPONDER: An emergency responder. This could be a police unit, fire truck, or
emergency vehicle.

iv

I3: The i3 standard defines protocols, interfaces and systems that underlie the NG911
architectural framework.

ICERT: Industry Council for Emergency Response Technologies. Trade association ded-
icated to advocating for providers of commercial public safety response technology,
software developers, and affiliated entities.

LOST: Location-to-Service Translation. Protocol that provides the operations for map-
ping locations to service Uniform Resource Indentifiers (URIs).

LTD: Long Term Definition framework architecture. The architectural framework devel-
oped by EENA for the NG112 system.

MSAG: Master Street Address Guide. Database of physical street names, address names,
emergency services and other codes necessary for routing emergency calls within the
911 system.

NENA: The National Emergency Number Association. The aim of NENA is to promote
the technological progress, accessibility, and adoption of a nationwide emergency tele-
phone number system in the United States.

NFPA: National Fire Protection Association. Non-profit organization with a focus on fire
safety.

NG911: Next Generation 911. The modern IP-based 911 system architecture.

NG112: Next Generation 112. European homologue of NG911 architecture.

FSM: Finite-state Machine. Abstract machine that can be in exactly one of a finite
number of states at any given time.

GPS: Global Positioning System. Satellite-based radio system that provides users with
positioning, navigation, and timing services.

ILECS: Incumbent Local Exchange (telephony) Carriers. Telephone companies that pro-
vided local services when the Telecommunications Act of 1996 was enacted.

OP: Operations Management. Processes seeking to optimize the efficient use of resources
to produce good and services that meet customer requirements.

v

PSAP: Public Safety Answering Point. Call center responsible for answering emergency
calls for police, firefighting, and ambulance services.

PTSN: Public Switched Telephone Network. Originally a network of fixed-line analog
telephone system, the PTSN is composed of all the world’s telephone networks.

SIP: Session Initiation Protocol. Protocol used for starting, maintaining, and terminat-
ing communication sessions.

SRDB: Selective Routing Database. The database containing the links between telephone
numbers and ESNs used to route 911 calls.

TLS: Transport Layer Security. Cryptographic protocol that provides communications
security over a computer network.

VOIP: Voice over Internet Protocol (IP). Technology used to provide voice calls using an
internet connection instead of the Public Switched Telephone Network (PTSN).

vi

ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to my chair, Dr. Michael Stiber,

for his patience, motivation, enthusiasm, and invaluable knowledge. His continuous support

and guidance helped shape the direction of this research and my academic growth. I would

also like to extend my appreciation to my committee members, Dr. Munehiro Fukuda and

Dr. Jonnhy Lin.

I thank my fellow members of the Intelligent Lab Network for their contribution to

Graphitti and this research. In particular, Bennet Ye and Jacob White who developed

tools for ESCS graph visualization and editing, and Divya Kamath and Xiang Li who made

substantial architectural improvements to Graphitti.

Lastly, I extend my appreciation to Scott Sotobeer for providing invaluable insights into

the working of ESCSes and their associated policies.

vii

DEDICATION

To my dear wife, Juni.

Without her unconditional support, this thesis would still be in the realm of dreams.

viii

1

Chapter 1

INTRODUCTION

An Emergency Services Communication System (ESCS) encompasses the collection of

organizational, electronic, and virtual elements designed for answering emergency calls and

coordinating responses. Consequently, ESCS systems serve as the critical link that con-

nects individuals with essential first responders during emergencies. Despite their pivotal

role in disaster preparedness, these systems can exhibit vulnerabilities under such extreme

circumstances [10, 13, 45]. As such, it is essential to understand when and how their proper

functioning starts to collapse.

ESCSes are undergoing significant infrastructure updates. In the United States, the Next

Generation 911 (NG911) initiative is converting the Enhanced 911 (E911) system into an

Internet Protocol (IP)-based system [34]. This IP-based ESCS infrastructure is also being

implemented in Ecuador [8], Europe [27] and Asia [30]. The updated infrastructure promises

enhancements to the functions, availability, and resilience of these systems by improving

the inter-connectivity between Public Safety Answering Points (PSAPs) and emergency re-

sponders; enhancing call localization; and allowing ESCSes to receive text and multimedia

messages on top of traditional voice calls. However, to deliver on those promises one must

understand and mitigate the significant threat presented by cyberattacks, such as Distributed

Denial of Service (DDoS), to the availability of the services provided by ESCSes [2, 32, 54].

PSAPs tend to be the main focus of modeling and simulation research because of their

critical role in connecting the public with emergency responders. Since PSAPs are emer-

gency call centers, analytical models such as Erlang equations are often used to model their

operations. For instance, in the US, the National Emergency Number Association (NENA)

2

incorporates the Extended Erlang B equation into their recommendations for PSAP staffing

policies [39]. However, the simplicity of analytical models requires that one makes significant

and often unrealistic simplifying assumptions; such models can be unsuitable for complex

systems, such as ESCSes. Computer simulations offer a practical solution for the analysis

of complex systems, offering various advantages, including enhanced model reusability, sim-

plified model creation, reduced need for oversimplification, and easy adaptability [53]. They

also force investigators’ mental models and assumptions to be made precise and explicit.

This thesis introduces an adaptable graph-based simulation framework and mathematical

models that provide a comprehensive solution for ESCS simulation. This includes abstract

models for the three distinctive aspects of an ESCS: (1) network structure, (2) internal be-

havior of its main components, and (3) interactions among these components. The versatility

of this system facilitates the creation of ESCS simulations for various purposes, including

day-to-day operational management, analysis and planning for crises or catastrophic events,

and evaluating vulnerabilities to cyber-attacks.

We designed our simulation framework by re-architecting Braingrid, a specialized high-

performance neural network simulator [47], into a general-purpose simulator for graph-based

systems known as Graphitti [31]. ESCS components are depicted as a graph-based structure

supporting Communicating Finite State Machines (CFSMs). Each vertex in this graph

represents an FSM operating within a discrete event queuing model; whereas each edge

denotes a communication link. Currently a sequential implementation, the architecture is

designed to facilitate a future GPU implementation.

1.1 Contributions

The framework and models introduced in this study provide a comprehensive solution for

simulating ESCSes, harnessing the advantages offered by computer simulations. Rather

than a one-off simulation, we have developed a first-of-its kind, generalized framework for

simulating graph-structured systems and applied it to ESCS operations. This framework uses

configuration files to provide flexibility for simulating heterogeneous ESCS networks and to

3

adapt diverse mathematical models for stochastic processes. ESCS graphs are specified using

GraphML, a standardized graph representation language [50]; whereas call arrival and other

stochastic processes are specified using Extensible Markup Language (XML).

Modeling call arrivals is especially complex due to its multifaceted nature, which includes

inter-day, intra-day, and seasonal variability [21]. A novel contribution of this thesis is the

modeling of call arrivals as the realization of a cluster point process, capitalizing on the

connection between emergency calls and the underlying emergency incidents. Moreover,

this work delves into aspects of ESCSes frequently overlooked by other models, such as call

abandonment, redial, and the emergency personnel dispatch process.

Lastly, to enable the simulation of large and complex ESCSes, the models were designed

for a highly parallelized GPU implementation, although the current implementation was

carried out on a serial CPU architecture.

1.2 Overview

Chapter 2 provides an in-depth exploration of ESCS, tracing their historical development

alongside technological advancements and offering insights into the 911 response process.

This chapter lays the foundational context necessary for understanding the subsequent chap-

ters. Chapter 3, on the other hand, presents a thorough literature review, examining the

landscape of ESCS modeling and simulation.

The methods are outlined in two separate chapters. In Chapter 4, we delve into the

abstract models employed to capture different facets of an ESCS, the principal architectural

decisions guiding the simulation framework, and their practical implementations. Meanwhile,

Chapter 5 offers an examination of the mathematical models serving as the foundation for

realizing the various stochastic processes integral to simulating ESCS.

Chapter 6 offers a comprehensive evaluation of the mathematical models’ implementation

and their ability to capture various aspects of an ESCS through the use of a demonstrative

application. Lastly, in Chapter 7, we summarize the key findings from this study and provide

a glimpse into potential avenues for future research.

4

Chapter 2

BACKGROUND: EMERGENCY SERVICES
COMMUNICATION SYSTEMS (ESCSes)

An Emergency Services Communication System (ESCS) encompasses the collective or-

ganizational, electronic, and virtual components involved in the reception of emergency calls

and the coordination of responses to emergency incidents, complemented by the relevant

policies and procedures governing their operation. Consequently, such a system plays a piv-

otal role in enabling efficient communication during emergencies, ensuring prompt response

and assistance. For example, in the United States and Canada, the emergency hotline num-

ber 911 is used to connect individuals in distress with the appropriate responders to handle

critical situations. Similarly, the European Union introduced 112 as the single European

emergency number to allow access to emergency services through a common number every-

where in the European Union, becoming available to all European Union member states by

2009 [29].

An ESCS can be thought of as two networks. First, a reliable telecommunication network

serves as the vital link between the public and emergency services [30]. Then, a public

safety network provides the wireless communication network used by emergency services

organizations, such as police, fire, and emergency medical services [15].

ESCSes have evolved alongside technology advancements. For instance, the 911 sys-

tem began using older circuit-switch telephony technology, with subsequent incorporations

of newer technologies as stopgap measures [3]. As demands and expectations grew, these

systems became limited, necessitating comprehensive overhauls and the implementation of

more advanced communication infrastructure. Ongoing efforts such as Next Generation 911

(NG911) in the US [3], and similar initiatives in other countries like Ecuador [8] and the Next

5

Generation 112 (NG112) in the European Union [30] [27], continue to drive these efforts.

2.1 History of 911: Keeping up With Technology

The importance of communication during disasters and emergencies has been recognized

since the early 1900s. The development of new telecommunication technology showed promise

but often lacked proper planning and preparation, which led to numerous failures, as de-

scribed by Farnham [16]. In the United States, before 911 became the designated emergency

number, people experiencing emergencies would dial “0” to reach an operator, who often

didn’t have the tools or training to assist with emergency calls [22].

In their report on the history of 911, the Industry Council for Emergency Response

Technologies (ICERT) outlines several critical developmental stages in the evolution of the

911 emergency system. These stages include Basic 911, Enhanced 911, Wireless Enhanced

911, VoIP Enhanced 911, and Next Generation 911 [22].

In 1957, the International Association of Fire Chiefs began advocating for a single tele-

phone number dedicated to reporting fires. However, it was not until 1968 that AT&T,

the primary telephone service provider in most of the US, officially designated 911 as the

emergency number. Senator Rankin Fite completed the first 911-based emergency call in

Halleyville, Alabama. During this period, AT&T emerged as the most suitable entity to

provide 911 services. As a free market approach was not yet feasible, state legislatures and

regulators established a regulated monopoly by entering into arrangements with incumbent

local exchange (telephony) carriers (ILECs). This marked the inception of the Basic 911

service. Subsequently, the Public Safety Act of 1999 presented the official designation of 911

as the national emergency calling number [42].

Using the same wireline, analog, circuit-switched technology that was used in public

switched telephone networks (PTSN), the infrastructure of the Basic 911 system established

a connection between a central telephony office with a single public safety answering point

(PSAP). However, the responsibility for handling and regulating emergency call services fall

under the jurisdiction of state governments thus classifying 911 calls as a local service.

6

The initial implementation of the Basic 911 in the 1970s faced hurdles. As reported

by Dayharsh et al. [12] in 1979, only 25% of political jurisdictions had a functional 911

system. This sluggish adoption was attributed to challenges in planning, high costs, limited

interest from telephone companies, fragmented federal funding, and a lack of public awareness

regarding the 911 service [12].

In the mid-1970s, the first significant improvement to the 911 system emerged in the

form of Automatic Location Information (ALI) and Automatic Number Identification (ANI).

This enhancement granted automatic access to critical information such as the caller’s name,

address, and phone number. This marked the transition to the Enhanced 911 (E911) system,

which introduced various advances, including the capability to route calls to the appropriate

Public Safety Answering Point (PSAP) after going through a Public Switched Telephone

Network (PTSN) and a specialized selective router. Although this solution proved effective

for landlines, it posed challenges for wireless telephone services.

As wireless telephone services gained widespread adoption in the early 1990s, the Federal

Communications Commission (FCC) stepped in, mandating the issuance of the Wireless

Enhanced 911 Rules. These regulations required wireless carriers to provide the location

of 911 callers. By 2001, providers were mandated to deliver the latitude and longitude of

callers but were given the freedom to choose the location technology, whether through a

global positioning system (GPS) or network-based methods like cell-tower triangulation.

The advent of Voice-over-IP (VoIP) technology posed a fresh challenge for E911. The

nomadic character of Internet-based VoIP services made pinpointing a caller’s precise location

challenging, resulting in many VoIP providers lacking 911 capabilities. Additionally, these

providers often failed to inform their customers about the absence of 911 service. In response,

the Federal Communications Commission (FCC) intervened by imposing 911 obligations on

VoIP providers.

Furthermore, the New and Emerging Technologies 911 Improvement Act of 2008 granted

VoIP service providers access to network elements and other capabilities that could seamlessly

integrate with the E911 system.

7

2.2 Next Generation 911

In the early 2000s, it became evident that the reliance on reactive adjustments to the 911 sys-

tem, prompted by emerging technologies, was no longer sustainable. The 911 system needed

a redesign to overcome the limitations of its circuit-based technology and to accommodate

newer services such as text, video, social networking, and web-based calling [3].

Next Generation 911 (NG911) represents the ongoing efforts to overhaul the system

with more advanced telecommunication infrastructure. In 2011, the National Emergency

Number Association (NENA) defined the first i3 architectural framework to standardize

the structure and design of the elements that form the software services, databases, network

elements and interfaces necessary for processing multi-media calls and data for NG911. That

same year, Barnes et al. [4] published the “Technical Considerations for Next Generation

911” document, which provided comments about various aspects of the i3 architecture such

as capabilities, applications, transport mechanisms, NG911 participants, interoperability,

standards, location capabilities, and cybersecurity. This document was the cornerstone for

a nationwide Next-Generation 911 implementation, with the latest revision of the standards

published in 2021 [34].

The European Emergency Number Association (EENA), the European counterpart of

NENA, is actively engaged in similar efforts. EENA had adapted NENA’s standards to Eu-

ropean PSAPs by maintaining a close alignment with the i3 architectural framework within

their Long Term Definition (LTD) framework architecture [27]. The similarities between the

NG112 LTD and i3 architectures reinforce our confidence that the models developed based

on the current NG911 system can be applied to other ESCS networks. Furthermore, the

architectural framework presented by Corral-De-Witt et al. [8] for the transition from E911

to NG911 in Ecuador also contains common elements to their US counterparts. This makes

sense, since they all seek to incorporate the ability to handle new multimedia services into

their ESCS and provide better and faster caller localization and routing.

One goal of NG911 is to service multimedia messages [22]. Similar proposals have emerged

8

in Europe for the design and implementation of a Next Generation platform capable of

handling rich media emergency calls [30]. This would enable an ESCS to take advantage

of car crash detection systems, already present in modern vehicles, and health monitoring

devices in addition to text, images and videos. However, this raises operational questions

that might be explored through modeling and simulation such as:

• How would the handling of multimedia messages affect the workload of call takers and

dispatchers?

• Would this affect the wait and service time for regular voice calls?

• Would this have any effect on the throughput of regular voice calls?

• How prepared are call takers and what technology do they need to handle multimedia

messages effectively?

The NG911 system introduces a crucial shift by using Geographic Information System

(GIS) data for caller location and routing. This modern approach replaces traditional

databases like the master street address guide (MSAG), automatic location identification

(ALI), emergency service number (ESN), and selective routing database (SRDB) [22]. This

thesis encapsulates this NG911 aspect in modeling the ESCS network, using the geographic

locations and jurisdictional and service boundaries to determine the ESCS elements (vertices)

and the communication links (edges) between them.

In summary, since its conception in 1968, the 911 system in the US has organically evolved

into a system of systems, dependent on dated technology that now requires a paradigm change

to take advantage of modern technology. Such paradigm change is being implemented in the

Next Generation 911 (NG911) project [49]. Although the FCC offers recommendations to

enhance cybersecurity, operations, and funding, the actionable decisions will ultimately hinge

on the unique circumstances, priorities, and knowledge at the Public Safety Answering Point

(PSAP) level [49].

9

The current transition into Next Generation ESCSes requires substantial efforts in plan-

ning and research if it is to avoid past mistakes. Due to the local governance nature of

911, research must be done at various jurisdictional levels: local, state, and national. The

flexibility and performance of the “Graphitti” simulator, together with the abstract and

mathematical models discussed in this thesis, present the foundation for future simulation

research at different scales. Although we based our models on the NG911 system, for prac-

tical purposes, these models should apply to any ESCS network because they share many

core commonalities.

2.3 The 911 Response Process

The 911 response is a dynamic process with multiple key players. It all starts with the person

in need, who makes the initial call for help that connects them to a call-taker at the nearest

PSAP. The call-taker gathers essential details and inputs them into a system that pinpoints

the caller’s location and categorizes the type of emergency. From there, a dispatcher, who

might also be the call-taker in some cases, sends the right emergency responders to the scene

of the incident. Once the responders are on-site, they provide the necessary assistance. But

it does not end there; the system keeps gathering valuable data. Responders file reports,

cross-check their assessment with the call-taker’s information, and record response times [35].

2.3.1 Call Initiation

Beyond connecting callers with the appropriate PSAP, telephony service providers are man-

dated to transmit the caller’s location — a process that varies in form and precision de-

pending on the calling technology: wireline phones, wireless cellular devices, or Voice over

Internet Protocol (VoIP) services. For wirelines, this would typically be a physical address;

for wireless, it could involve GPS in the handset or cell tower information, which could re-

sult in location inaccuracy of kilometers [3]. Figure 2.1 provides an illustration depicting the

process of acquiring the caller’s location within the 911 system.

10

Telephone Company
(Local Exchange Carrier)

PSTN
(Public Switched
Telephone Network)

PSAP
(Public Safety Answering Point)

Cellular Network

Wireline Calls

Wireless Calls

ANI
(Automatic Number Information)

ALI
(Automatic Location Information)

ALI Database MSAG
(Master Street
Address Guide)

Selective
Router

GPS / a-GPS data Radiolocation data

Network based data (Phase I)
Cell Tower location data

Exchange

Handset based data (Phase II)

Location Database

Emergency Service

Caller Location
Information

Computer Assisted
Dispatch System

Source: Evan Mason, “911 System,” via Wikimedia Commons. Licensed under the Creative Commons

Attribution-Share Alike 3.0 Unported license

Figure 2.1: The 911 System call routing for wireline and wireless emergency calls.

2.3.2 Call Routing and Delivery

Call routing aims to link the caller with the appropriate PSAP. Previously, the emergency

call was directed to the nearest PSAP based on the caller’s location, retrieved from the local

telecommunications network. This process is depicted in Figure 2.1. However, the evolution

to Next-Generation 911 (NG911) is ushering in a revised routing mechanism reliant on

Geographic Information System (GIS) data [7]. NG911 employs GIS databases housing the

service boundaries of PSAPs, leading to the redirection of calls to the PSAP serving the

caller’s precise location.

Published by Barnes and Rosen [3], Figure 2.2 outlines the routing sequence within the

NG911 system. This routing framework is tailored for modern mobile calls and internet

calling services, integrating wireline and older wireless services through a Gateway, thus

standardizing their protocol. Furthermore, a Location-to-Service Translation (LoST) proto-

11

Emergency Services IP network

IP Network

Local exchange
switch

Mobile switching
center

LoST serverLocation information
server

Gateway

IP switch

Routing engine

Emergency
Communications

center

Figure 2.2: The Next Generation 911 (NG911) System call routing framework. Redrawn

from Barnes and Rosen [3].

col server unifies location information, either civic addresses or geographic coordinates, into

a Uniform Resource Identifier (URI) that is used to route the emergency call. Ultimately,

all emergency calls go through the same LoST protocol and routing engine.

2.3.3 Call Processing and Dispatch

After an emergency call reaches a PSAP, call-takers follow a specific call protocol designed

to assess the emergency, determine necessary services, and provide essential information for

responders [35]. While this protocol might vary among PSAPs, the National Emergency

Number Association (NENA) outlines minimum requirements, suggesting that call-takers

should gather critical details such as the incident’s address or precise location, a callback

number, the nature of the call, the time it occurred, any identified hazards, and the caller’s

identity [33]. NENA also establishes standards for the time intervals between the call arrival

at a PSAP and the answering time, as depicted in Figure 2.3. According to these guidelines,

NENA recommends that 90% of calls should be answered within 15 seconds of arriving at a

12

Call
Initiated

Call Arrives at
PSAP

Call
Answered

Call
Processed

Units
Notified/Dispatch

Continue Call
Procesing

Call Transfer

Units Arrive On
Scene

NENA and NFPA calls answer interval standard
- 90% answered in <= to 15 seconds
- 95% answered in <= to 20 seconds

Figure 2.3: 911 call handling and dispatching flow chart. Both the National Emergency

Number Association (NENA) and the National Fire Protection Association (NFPA) suggest

the same call-answering interval standard. Redrawn from National Emergency Number

Association (NENA) and others [33].

PSAP and 95% of calls within 20 seconds — a standard that is also adopted by the National

Fire Protection Association (NFPA) [33].

The culmination of the call processing phase ideally results in dispatching a response

unit to the emergency. Dispatch responsibilities can differ across jurisdictions, sometimes

involving specialized dispatchers within certain PSAPs. Once the essential information is

gathered, call-takers proceed to either dispatch the appropriate response unit or transfer

the call to a designated dispatcher. This dispatching process encompasses critical decisions

regarding the types and quantity of response units required. Furthermore, all pertinent

information must be effectively communicated and logged into the Computer-Aided-Dispatch

(CAD) system that assists responders in swiftly identifying the required type and speed of

response [35].

13

2.3.4 Incident Response

The primary goal of an Emergency Services Communication System (ESCS) is to ensure a

prompt and appropriate response to incidents. Depending on the emergency’s nature, this

response might involve one or multiple units from various services, such as police, fire, or

emergency medical services (EMS).

The interval between the initial call for assistance and the arrival of a response unit at the

scene is known as the response time. This time frame is critical within an ESCS and serves

as a key metric for evaluating police performance, as noted in Stevens et al. [46] work on the

role of response time in assessing police performance. Stratmann and Thomas [48] support

this by linking a decrease in 911 response times to a significant reduction in homicide rates.

Once a response unit is dispatched, it remains occupied for the combined duration of the

response time, the time it takes to travel to the site of the incident, and the period dedicated

to delivering necessary services at the emergency scene. This delivery of emergency services

marks the final stage of the emergency response process.

14

Chapter 3

LITERATURE REVIEW

Previous research on ESCSes has predominantly focused on data analysis and the de-

velopment of predictive models aimed at identifying incidents and call patterns; whereas

simulation remains relatively limited and unexplored. Neusteter et al. [35] analyzed 35

papers delving into 911 data within policing contexts, revealing two main methodological

approaches. One approach relies on standardized metrics such as call volume, types, and

response time, offering a comprehensive yet less detailed perspective. The second approach

employs complex techniques to model caller behavior, track call-type patterns over time,

and identify obstacles to prompt responses. Notably, none of the studies in this review took

advantage of simulations.

The little work that uses simulation to study ESCSes primarily concentrates on vulner-

abilities to cyberattacks such as DDoS [2, 32, 54]. The only exception is Gustavsson [20],

who employed simulation within Operation Management (OM) of an Emergency Call Cen-

ter. This research introduced a method for modeling the burst behavior in the call arrival

process that, although different than the cluster-point process presented here, also leverages

the link between emergency calls and the incidents that trigger them [21]. Gustavsson [20]

studies important aspects of an ESCS such as the non-stationarity of call arrivals, stochastic

call-taker behavior, and the relationship between the geographical distance between PSAPs

to their service area and service time. However, their simulations were tailored to a Swedish

emergency call center provider, requiring extensive work to implement for other emergency

call centers. In addition, their work recognizes the importance of call abandonment but does

not include it in their models.

Mirsky and Guri [32] researched the vulnerability of the 911 system to DDoS attacks

15

by anonymous unblockable calls originating from mobile phones. They conducted practical

assessments by deploying bots designed for executing such DDoS attacks within a limited

cellular network. They then simulated the potential impact of a DDoS assault on an E911

network, finding that fewer than 6000 bots could disrupt emergency services throughout a

state for extended periods. Their simulation employed a lumped discrete event simulation

of the busiest time of the day to mirror the potential overload of Selective Routers due to a

botnet; however, it lacked depth in representing the comprehensive behavior of 911 entities

such as PSAPs and responders.

Xue and Roy [54] also studied DDoS attacks, using a cyberphysical queuing-network

model of the 911 system. Their simulation included models for a time-varying Poisson

process for call arrival, an exponentially distributed service time, dispatching dynamics,

responder travel time, and response time. However, their study omitted other important

processes, such as call abandonment and redial, and focused on a small area of 10x15 miles

(Charlotte, NC) with no discussion of model scalability.

Other research works explore the performance impacts of an Internet Protocol (IP)-based

911 network [14] and the increase in attack surface posed by the text-to-911 service [2].

Desai et al. [14] employed a testbed to investigate the performance impacts of implementing

Transport Layer Security (TLS) within the Session Initiation Protocol (SIP) and Location to

Service Translation (LoST) on IP-based emergency calls; revealing that the TLS handshake

typically accounts for about 20 percent of the call setup delay under normal circumstances.

Bal et al. [2] studied how text messages to 911 could be abused by attackers, introducing

a modular Text Analysis Engine for early detection and mitigation of cyberattacks via text

messages to 911.

16

Chapter 4

METHOD: ESCS DOMAIN ARCHITECTURE

Our framework is designed to simulate the operations of large heterogeneous ESCS net-

works, and to easily adapt diverse mathematical models for the various stochastic processes

involved. It can be used for studies of cybersecurity threats, catastrophic events, and reg-

ular ESCS operation. We model three crucial aspects of an ESCS: (1) system structure,

(2) its main components’ internal behavior, and (3) the interactions among these compo-

nents. These considerations are examined in the following subsections in order, from general

to specific.

4.1 Structure: ESCS as Graph-Based Systems

Initiating a 911 call sets in motion a cascade of events that involve various layers of tech-

nology and emergency personnel. ESCSes are complex heterogeneous multi-network systems

that have safety-critical, operational, and regulatory concerns. For any model to be useful,

however, it must be simpler than the real system; thus, one must reduce it to the core el-

ements. In light of this, the following three fundamental ESCS entities were identified and

characterized: (1) Caller Regions (CR), (2) Public Safety Answering Points (PSAPs), and

(3) First Responders.

Here, Caller Regions denote the geographic areas from where calls originate, PSAPs

are emergency call centers responsible for answering emergency calls and dispatching first

responders, and Responders indicate the headquarters from where first responders are dis-

patched (e.g. police and fire stations). These components are arranged in a network that

underlies the GIS-based call routing and dispatching dynamics of an ESCS, as described in

Subsection 2.3.2.

17

ESCSes are part of a family of complex systems with cyber-physical dependencies that

are effectively represented using graphs. For instance, in the work by Jalving et al. [23],

an algebraic graph abstraction was introduced to represent physical connectivity in complex

optimization models, along with a computing graph abstraction to depict communication

connectivity in computing architectures, similar to the approach in this thesis. Graphs

are used to model network nodes (vertices) and their connections (edges) in a pairwise

relationship. The particular model, in this thesis, is a directed graph, where vertices denote

the aforementioned ESCS entities and edges represent the communication channels between

them.

The topology of an ESCS network is determined by the geographic placement and service

coverage of its components. For example, when a caller region falls within the service area

of a PSAP, these entities are interconnected by bidirectional edges. Likewise, bidirectional

edges are established between first responder locations and the corresponding PSAPs serving

their geographic vicinity.

This modeling technique was applied to the NG911 network of the State of Washington’s

King County. The network topology was extracted from various GIS datasets by encoding

the jurisdictional and neighboring relationships of the 911 components in a directed graph.

To that end, the Washington State 911 Coordination Office provided GIS datasets that

contained the jurisdictional and service boundaries for PSAPs, police, fire, and emergency

medical services (EMS) of the State of Washington 911 network. Figure 4.1 presents a

depiction of the service boundaries of the State of Washington’s PSAPs, overlayed on an

OpenStreet map.

4.1.1 Performance Considerations in Simulations of Large Complex Systems

Depending on the size of the modeled region, the ESCS network can be large, in the range of

tens of thousands of nodes and connections, each expressing complex behavior. Therefore,

performance is a key architectural concerns in our simulations, prompting the consideration of

a future parallel implementation of the described models. Lacking parallelization, simulations

18

Figure 4.1: Service boundaries of the State of Washington’s PSAPs

of such complex systems will result in significant execution time. Stiber et al. [47] found that

the parallel GPU implementation of a biological neural network simulation, using modern

GPU architectures and libraries (CUDA), achieved a 40-fold increase in performance.

The models described in this thesis were implemented using the Graphitti simulator

to take advantage of its performance capabilities in simulating large graph-based systems.

Furthermore, Graphitti is designed to simulate hybrid discrete/continuous graph-based sys-

tems and facilitate the migration and validation of large-scale (tens of thousands of vertices,

millions of edges) and long-duration (billions of time steps) simulations to GPUs. These

capabilities were demonstrated in simulations of development and tuning in biological neural

networks at that scale [47].

Parallel programming can be complex. It involves the challenging task of understanding

the sequencing of threads or processes running concurrently and one must exercise caution

19

to avoid introducing race conditions. Consequently, debugging can be an intimidating task.

Message passing and synchronization mechanisms, such as mutex locks and semaphores,

are often used to deal with some of the challenges introduced by parallelization. However,

these could cause threads to block execution under certain circumstances. In Graphitti, the

strategy for eliminating race conditions is to avoid using variables that could be accessed

and manipulated by different threads. Abstractly, one can think of each vertex as a thread

of execution, each having ownership over its data structures, and thus, not allowing their

manipulation by other vertices.

To facilitate debugging, an initial serial CPU version of the models is implemented with

parallelism considerations, serving as the foundation for the subsequent GPU implementa-

tion. Consequently, bugs found in the CPU implementation can be correspondingly rectified

in the GPU version. The representation of entities possessing data structure ownership,

alongside the mirrored CPU and GPU implementations, provides a framework for address-

ing the intricacies inherent to parallel computing.

4.2 Behavior: Discrete Events Queueing Model

In essence, PSAPs are call centers specialized for emergencies. Therefore, discrete Event

Queuing Models extensively used in the management of call centers are suitable for modeling

the processing of emergency calls by PSAPs. Furthermore, the same concept can be applied

to emergency responder nodes, for modeling dispatching and response actions, forming a

multi-queuing model.

Figure 4.2 illustrates a queuing model, generally used in the modeling of call centers.

Conceptually, a call center contains k trunk lines with up to the same number of workstations

(w ≤ k) and agents (n ≤ w ≤ k) [17]. One of three scenarios occurs when a call arrives:

(1) it is answered right away if there is an available agent, (2) the call is placed in a queue

if there are no available agents, or (3) the caller receives a busy signal if there are no trunks

available.

In this model, we think of an agent as a resource that is occupied while a caller is receiving

20

Busy

Lost calls

AbandonedRedial
Arrival Process

Agents

Served

Figure 4.2: Call center as a queuing system. The diagram represents a system with 3 agents

(n) and 8 trunk lines (k); therefore, the size of the waiting queue is 5 (n− k).

assistance and immediately released once it has been served. Calls are lost due to blocking

when all trunks are busy or when a caller abandons the queue due to impatience, possibly

redialing soon after. Consequently, arriving calls come from either those who made an initial

call, those who got a busy signal, or those who abandoned the queue after waiting.

Stochastic processes such as call arrivals, service time, and customer impatience –which

represent call abandonments– must be modeled through random variables, drawn from a

suitable probability distribution. Existing research in this area provides possible candidates

but their goodness of fit has to be evaluated based on data obtained from the real system [25].

The details of the modeling of stochastic processes are discussed in Chapter 5.

4.3 Interactions: Communicating Finite State Machines

The use of Communicating Finite State Machines (CFSM) proves to be well-suited for mod-

eling the interactions between ESCS components. This framework was researched by Brand

and Zafiropoulo [5] in the domain of distributed computing. They employed a common

21

representation of communicating processes, where each process functions as a finite-state

machine and inter-process communication occurs through reliable full-duplex first-in first-

out (FIFO) channels. This approach offers several advantages, such as the ability to analyze

the execution of each process separately, rather than considering the system as a whole,

thus partitioning the complex behavior into manageable subproblems. Notably, this model

abstraction aligns with the potential for a future parallel GPU implementation.

A simulation begins with an initial configuration defined by specific parameters and

proceeds for a predetermined number of time steps. The values of these parameters and

simulation variables at each time step collectively constitute the “system state.” For an

ESCS graph, the system state is a comprehensive representation of every vertex and edge

within the graph. During each time step, ESCS entities receive inputs and undergo state

transitions, potentially resulting in the transmission of outputs to other vertices.

For performance purposes, Graphitti is designed to facilitate the implementation of sim-

ulation models on Graphic Processing Units (GPUs). These GPU implementations enable

high-performance simulations of large complex systems but at the same time, their high par-

allelization presents challenges for inter-process communication. Modeling the interaction

between ESCS entities as Finite State Machines that communicate with each other by trans-

ferring event messages through their connecting edges, provide a useful abstraction for highly

parallelized systems such as future GPU implementations of these models. In Figure 4.3,

the depiction illustrates how various types of ESCS vertices both receive messages through

their incoming edges and transmit messages via their outgoing edges.

Each vertex is depicted as a Finite State Machine (FSM), with state transitions deter-

mined by arising events, such as call initiation, call answer, unit dispatch, call termination

and end of emergency response. The internal behavior of each vertex aligns with a discrete

event queuing model, as illustrated in Figure 4.4. Consequently, each vertex contains a First-

In-First-Out (FIFO) queue that dictates the sequence in which events are processed and a

collection of attributes, some of which are expressed as stochastic processes using probabil-

ity distributions. The PSAP and responder vertices maintain lists of resources, representing

22

Call Dispatch

Unavailable
Abandoned call

Transfer Call

Arrived on sceneBusy Signal

C
R

 to
 P

S
A

P
P

S
A

P
 to

 C
R

Caller Region PSAP Responder

P
S

A
P

 to

R
es

po
nd

er
R

es
po

nd
er

 to

P
S

A
P

P
S

A
P

 to
 P

S
A

P
Vertex E

dg
e Incoming Edge

Outgoing Edge

Figure 4.3: Illustration of vertices communication. Messages are exchanged via their incom-

ing and outgoing edges.

servers and responder units, respectively. Moreover, each vertex records metrics for both

serviced calls and emergency responses.

4.4 Graphitti Implementation

The successful implementation of the ESCS models requires that the simulator can load

diverse graphs, such as those essential for representing ESCS networks, and accept external

events as inputs. These features were not present in Graphitti thus requiring their imple-

mentation as part of this Thesis. It was decided that the graph and event inputs would be

provided through external files because it optimizes flexibility, clearly separating the data

from the algorithmic implementation of the models.

23

Caller Region (CR)

Call Queue

CR FSM

Pop Next Call

Schedule Call

Attributes:
- Call Arrival process
- Redial Rate
- Boundaries

PSAP
Waiting queue

PSAP FSM

Process next Call

Call Log:
- PSAP ID
- Call ID
- Start time
- Answered time
- End of Service time
- Type
- Location: Lat, Long
- Was rerouted?

Server List

Update Server Status

 Update Log

Attributes:
- Location: Lat, Long
- Service time distribution
- Hangup rate
- # Trunks Lines
- # Agents

Responder

Responder
FSM

Response Log:
- Responder ID
- Dispatch time
- Arrival time
- End of Response time
- Type
- Location: Lat, Long

Response Unit Attributes:
- Availability
- Count Down Update Unit

Update Log

Attributes:
- Location: Lat, Long
- Travel time
- On-site time distribution
- Type: {Law, Fire, EMS}
- # Units
- # Trunk Lines

Call

Abandoned call

Dispatch No Unit Available

Tranfer call to Alternate PSAP

InputManager

Unit arrived on scene

Busy Signal

Response Unit List

Dispatch Queue

Next Dispatch

Figure 4.4: 911 System as Communicating Finite State Machines

24

4.4.1 GraphML: The Graph File Format

The chosen format for representing graphs and their attributes, as inputs for Graphitti, was

GraphML. This decision was made after careful consideration, weighing the options of devel-

oping an in-house format and against other widely recognized formats such as GraphSON [24]

and GEXF [18]. GraphML is a well-documented industry standard with extensive support

from various graph libraries, including the C++ Boost Graph Library (BGL) [43]. The

GraphML standard, initially proposed by Brandes et al. [6] in 2002, prioritizes simplicity,

generality, extensibility, and robustness, aligning perfectly with our specific requirements.

Furthermore, GraphML is XML-based, accommodating typed data, thus seamlessly inte-

grating with Graphitti’s use of the strongly typed C++ language and XML as the chosen

format for configuration and output files.

In Listing 4.1, you can see an illustrative ESCS graph expressed in the GraphML format.

This definition outlines a directed graph featuring two nodes and two edges. Each node has

various attributes, namely objectID, name, type, y, x, servers, and trunks, each specifying

their corresponding data types (int, double, and string).

Listing 4.1: Example of ESCS Graph Using GraphML Format

<?xml version =’1.0’ encoding=’utf -8’?>

<graphml xmlns="http :// graphml.graphdrawing.org/xmlns">

<key id="trunks" for="node" attr.name="trunks" attr.type="int"/>

<key id="servers" for="node" attr.name="servers" attr.type="int"/>

<key id="x" for="node" attr.name="x" attr.type="double"/>

<key id="y" for="node" attr.name="y" attr.type="double"/>

<key id="type" for="node" attr.name="type" attr.type="string"/>

<key id="name" for="node" attr.name="name" attr.type="string"/>

<key id="objectID" for="node" attr.name="objectID" attr.type="string"/>

<graph edgedefault="directed">

<node id="0">

<data key="objectID">PSAP120@kingcounty.gov </data >

<data key="name">SEATTLE PD </data >

25

<data key="type">PSAP </data >

<data key="y">47.27281192700005 </ data >

<data key="x"> -122.31477654167 </ data >

<data key="servers">6</data >

<data key="trunks">16</data >

</node>

<node id="1">

<data key="objectID">EMS104@kingcounty.gov </data >

<data key="name">Seattle FD - Belltown </data >

<data key="type">EMS </data >

<data key="y">47.61620068714826 </ data >

<data key="x"> -122.34445404482534 </ data >

<data key="servers">6</data >

<data key="trunks">7</data >

</node>

...

<edge source="0" target="1"/>

<edge source="1" target="0"/>

</graph></graphml >

4.4.2 The Input File Format (XML)

Graphitti characterizes system behavior as a discrete sequence of events. In the Biological

Neural Network model, these events materialize as spikes, triggered when a neuron’s mem-

brane electrical charge attains a particular threshold (spiking neuron model). In contrast, in

the NG911 model, the events take the form of calls or other messages exchanged among the

various entities.

The system’s behavioral logic is encoded within classes that extend the appropriate

Graphitti’s core component. However, there are situations in which we require the ability to

introduce external events as inputs. For instance, this capability enables us to replicate past

events from a 911 call log or simulate external neurological stimuli. To this end, the list of

26

events is provided to Graphitti as an XML input file.

Unlike GraphML, which offers a standardized format for graph representation, we did not

find a pre-existing standard format for describing event inputs. Consequently, we developed

an in-house XML-based format tailored to our requirements. This format comprises a root

node labeled “simulator inputs” and a “data” node, which acts as a container for a well-

structured list of events categorized by “vertex” nodes. Additionally, essential attributes

can be incorporated into the “data” node. For a practical example of an ESCS input file,

you can refer to Listing 4.2.

Listing 4.2: Example of an ESCS Input File

<?xml version =’1.0’ encoding=’UTF -8’?>

<simulator_inputs >

<data description="SPD_calls" clock_tick_size="1" clock_tick_unit="sec">

<vertex id="194" name="SEATTLE␣PD␣Caller␣region">

<event time="0" duration="0" x=" -122.38496236371942" y="

47.570236838209546" type="EMS"/>

<event time="34" duration="230" x=" -122.37482094435583" y="

47.64839548276973" type="EMS"/>

<event time="37" duration="169" x=" -122.4036487601129" y="

47.55833788618255" type="Fire"/>

<event time="42" duration="327" x=" -122.38534886929502" y="

47.515324716436346" type="Fire"/>

...

<vertex/>

...

<data/>

<simulator_inputs/>

4.4.3 Adding Support for GraphML and Inputs Files

Following Graphitti’s architectural approach, which uses a ParameterManager class for load-

ing the simulation parameters from a user-defined configuration file, two newManager classes

27

were integrated:

1. GraphManager: Loads the GraphML file

2. InputManager: Loads the simulation Inputs file

Figure 4.5 provides a component diagram of Graphitti’s architecture, illustrating the

roles of the GraphManager and InputManager components. The Connections and Layout

components, in addition to using the parameters from ParameterManager, rely on the graph

contained within GraphManager to generate Graphitti’s internal representation of the net-

work. The role of the InputManager is to load the list of events into internal queues, one

per vertex, to be retrieved by the respective vertex during a simulation. This design enables

the handling of a wide range of graph structures and input sources, whether they are from

real-world systems or synthetically generated. As a result, one can conduct experiments by

adjusting the network’s structure or the input arrival rate without making changes to the

simulator’s internal code.

The creation of synthetic graphs and input events has been externalized from Graphitti,

and their management is now handled through scripting. The Python programming language

is employed in this work to generate experimental synthetic data. For example, in Section 5.1,

Python is used to model call arrivals as a cluster point process. Similarly, retrieving King

County’s NG911 graph network, as detailed in Section 4.1, is also scripted. Although this

approach effectively demonstrates the framework’s capabilities, it’s essential to note that

these scripts are highly specialized for the current problem and offer limited reusability.

GraphManager Class

The GraphManager class leverages the Boost Graph Library (BGL) for loading GraphML

files. It is designed to handle properties associated with graphs, edges, and vertices through

the use of the following C++ structures: GraphProperty, EdgeProperty, and VertexProperty.

Before loading a graph, users must inform the GraphManager which member variable within

28

Figure 4.5: Graphitti’s Component Diagram with support for GraphML and inputs file

a data structure should store each of the node attributes from the GraphML file. This is

done using the registerProperty method, which requires the attribute’s name as a string and

a pointer to the data member within the data structure responsible for storing the attribute’s

value. These attributes are referred to as “properties” in the interface of the GraphManager

class which is designed to support graphs with various types of properties. Consequently, the

data type of the data member must match the type specified in the GraphML file. Listing 4.3

is a code snippet of how the Layout911 class, an NG911 Layout specialization, registers the

vertex properties with the singleton GraphManager object.

Listing 4.3: Code snippet: Registration of vertex properties

29

void Layout911 :: registerGraphProperties ()

{

// The base class registers properties that are common to all vertices

Layout :: registerGraphProperties ();

// We must register the properties before loading the graph

GraphManager &gm = GraphManager :: getInstance ();

gm.registerProperty("objectID", &VertexProperty :: objectID);

gm.registerProperty("name", &VertexProperty ::name);

gm.registerProperty("type", &VertexProperty ::type);

gm.registerProperty("y", &VertexProperty ::y);

gm.registerProperty("x", &VertexProperty ::x);

gm.registerProperty("servers", &VertexProperty :: servers);

gm.registerProperty("trunks", &VertexProperty :: trunks);

}

After all the properties have been successfully registered, the process of loading the

GraphML file becomes a matter of invoking the readGraph method. Following this step,

consumer code can seamlessly traverse the vertices and edges to construct Graphitti’s inter-

nal network representation, as illustrated in Listing 4.4. This code snippet illustrates how

Layout911 retrieves the “x” and “y” coordinates of the vertices from the GraphManager,

subsequently copying these values into its internal data structures.

Listing 4.4: Code snippet: Iterating over the graph’s vertices

GraphManager :: VertexIterator vi , vi_end;

GraphManager &gm = GraphManager :: getInstance ();

for (boost::tie(vi , vi_end) = gm.vertices (); vi != vi_end; ++vi) {

assert (*vi < numVertices_);

xloc_[*vi] = gm[*vi].x;

yloc_[*vi] = gm[*vi].y;

}

30

InputManager Class

The design of the InputManager class closely follows the principles of GraphManager. It

supports any user-defined event input property as long as it aligns with the input file format

described in Subsection 4.4.2. As with the GraphManager, the event properties must be

registered using its registerPropery method, which is an exact homolog of the GraphMan-

ager’s method of the same name. A practical example of this step is given in Listing 4.5,

which is a code snippet extracted from the All911Vertices class — an NG911 specialization

of AllVertices.

Listing 4.5: Code snippet: Registration of event properties

inputManager_.registerProperty("vertex_id", &Call:: vertexId);

inputManager_.registerProperty("time", &Call::time);

inputManager_.registerProperty("duration", &Call:: duration);

inputManager_.registerProperty("x", &Call::x);

inputManager_.registerProperty("y", &Call::y);

inputManager_.registerProperty("patience", &Call:: patience);

inputManager_.registerProperty("type", &Call::type);

Internally, the InputManager maintains event queues for each vertex, in a First-In-First-

Out (FIFO) fashion, that are subsequently accessible to the respective vertices during the

inter-epoch interval of a simulation. As each new epoch begins, all scheduled events for that

epoch are transferred into the internal queue associated with the relevant vertex.

Queue: CircularBuffer Class

The queueing of events is inherent to the “discrete event queueing” model used in this work.

As a result, we designed a CircularBuffer class that adheres to a basic FIFO queuing policy.

Opting to create a bespoke data structure rather than relying on an existing one, like the

CircularBuffer class in the Boost library, offers the benefit of streamlining the transfer of

data to GPU memory because we are in control of its internal representation. This strategic

31

decision positions Graphitti favorably for potential future GPU implementations of these

models.

4.4.4 Implementation of Vertex Communication and State Transition

One advantage of the Communicating FSM abstraction is its capability to consider the

execution sequence of each vertex in isolation. Interactions between vertices occur through

message exchanges across their connecting edges. Consequently, the system’s behavior at

each time step can be divided into two distinct phases:

1. a Communication Phase, when messages are received by the vertices, and

2. a State Transition Phase, during which the vertices undergo state transitions due to

internal or external events

4.4.5 The Communication Phase

During the communication phase, vertices must pull, from their incoming edges, the messages

that were sent by other vertices during the state transition phase. In the case of the NG911

models, these messages include emergency calls, dispatch instructions, and availability status.

The flow diagram in Figure 4.6 describes a sequential implementation of the communication

phase where vertices pull incoming messages by looping over all incoming edges.

In a parallel implementation, this “pulling strategy” prevents multiple processes from si-

multaneously accessing and modifying data structures, eliminating the need for locking. The

process that initiates a message, places it in its outgoing edge during the state transition

phase. Subsequently, the receiving process is responsible for retrieving and processing mes-

sages from its incoming edges. In this graph-based model, the sender and receiver processes

correspond to the source and destination vertices of an edge. This approach offers the added

benefit of enabling the use of a parallel reduction algorithm when managing a substantial

number of incoming edges.

32

Figure 4.6: Flow Diagram of the Communication Phase

Regarding message handling in the current implementation, if there is available space,

the destination vertex stores the message in its designated waiting queue. However, if space

is unavailable, the message is flagged and recorded as a dropped message. Decisions about

how to manage dropped messages are delegated to the source vertex.

4.4.6 The State Transition Phase

During the state transition phase, vertices react to internal or external events, potentially

undergoing state transitions. The state transitions in each of the three main ESCS enti-

ties identified in Section 4.1, and contextualized as FSMs in Section 4.3, are dictated by a

discrete-event queuing model as described in Section 4.2. This section provides details of the

implemented algorithm that characterizes each entity’s FSM.

33

Caller Region State Transition

A Caller Region denotes the geographical zone from which calls initiate, with a rate of

occurrence defined by the inputs file as described in Subsection 4.4.2. The call arrival process

in the present implementation is modeled as a cluster point process, described in Section 5.1.

Graphitti Simulations are divided into epochs, which are composed of many time steps.

Figure 4.7 presents the state transition algorithm of caller regions for one time step. In be-

tween epochs, all calls scheduled for the next epoch are loaded into the Caller Region’s queue.

Then, at each time step, a caller region executes two actions: (1) checks for any dropped

calls and decides if redialing is necessary, and (2) sends the next call to the corresponding

PSAP through an outgoing edge.

The current implementation requires that no more than one call occurs at a Caller Region

per time step. This is enforced by subdividing the geographic area that encompasses a

PSAP’s service boundaries into multiple regions or adjusting the duration of a time step, the

latter being an adjustable parameter in the “Inputs File” as presented in Subsection 4.4.2.

Public Safety Answering Point (PSAP) State Transition

The primary function of a PSAP is to respond to emergency calls originating from its Caller

Regions and coordinate the dispatch of suitable emergency responders. The algorithm out-

lined in Figure 4.8 delineates the steps taken by a PSAP vertex during each time step:

(1) identify servers that have concluded their service for a call, and (2) allocate new calls to

servers that are currently available.

In this context, a “server” represents an individual, at the PSAP, responsible for handling

calls. When a server finishes a call, it becomes available to attend to new ones. However, be-

fore assuming their next call, servers are tasked with fulfilling their dispatch responsibilities,

which include transmitting a dispatch message through an outgoing edge to the nearest suit-

able responder. Furthermore, they are required to document essential call metrics, including

the start time, response time, conclusion time, and any instances of call abandonment.

34

Figure 4.7: Caller Region Vertex Flow Diagram

35

All available servers are assembled into a list and iteratively processed for call assign-

ments. This process continues until there are either no more available servers or no more

calls remaining in the waiting queue. To account for possible call abandonments, a check is

performed at the loop outset. If a caller’s wait time surpasses their patience threshold —

the duration they are willing to wait in the queue — their call is classified as abandoned and

recorded as such.

Upon getting a call assignment, a server is temporarily occupied for the call’s duration.

The duration of the busy time is governed via a countdown variable, reverting to an available

state once this countdown expires. Lastly, the count of occupied servers is updated and later

used to calculate the available space in the queue for the next time step.

Emergency Responder State Transition

A responder vertex designates the location from which responder units are dispatched. The

algorithmic framework, depicted in Figure 4.9, shares a likeness with that of the PSAP

vertex, rooted in their common discrete event queuing model. Consequently, both algorithms

comprise two analogous phases. Initially, units that have completed their response to an

emergency incident document their response metrics and are reinstated as available units.

Subsequently, emergency incidents are assigned to available units until either all units are

busy or no more incidents remain in the dispatching queue.

The time during which a response unit remains busy is calculated as the sum of the

driving time to the incident location and the time spent at the scene (on-site time). Like

the servers in a PSAP, this duration is monitored using a countdown variable. The count of

occupied units is also updated as it influences the estimation of the waiting queue’s available

capacity for the next time step.

36

Figure 4.8: Public Safety Answering Point (PSAP) Vertex Flow Diagram

37

Figure 4.9: Responder Vertex Flow Diagram

38

Chapter 5

METHOD: ESCS MATHEMATICAL MODELS

5.1 Call Arrival as Realization of a Spatio-Temporal Cluster Point Process

A spatio-temporal cluster point process is a random phenomenon that describes the arrange-

ment of events within a given area and along time, exhibiting a tendency to form clusters

or groups instead of being randomly distributed. This process is characterized by three key

elements: (1) a primary process, (2) a secondary process, and (3) the systematic aggregation

of secondary points. In simpler terms, a cluster point process involves aggregating clusters

of events associated with the points of a primary process, often referred to as the parent

process [40].

Cluster point processes, exemplified by the Neyman-Scott process [36], have demon-

strated remarkable effectiveness in modeling natural phenomena. Their versatility extends

to diverse fields including cosmology [36], rainfall analysis [9], seismic events [1], and neural

spike trains [19]. These examples underscore the ability of cluster point processes to capture

complex real-world phenomena accurately. In this work, we use a spatial-temporal cluster

point process for modeling the relationship between emergency calls and the emergency inci-

dents that generate them. Here, the primary process represents the occurrence of emergency

incidents and the secondary process represents the resulting emergency calls. By adopting

this approach, we can effectively capture the spatial and temporal clustering of call arrivals

in proximity to emergency incidents.

5.1.1 The primary process

Any point process that can effectively capture the temporal and spatial characteristics of

emergency events can serve as the primary process. It is essential to highlight that the dis-

39

tribution of points in time and in space operates independently, allowing for both stochastic

and deterministic occurrences as well as regular and irregular patterns. For simplicity, we

adopt a Poisson distribution to model the primary point process in time and the points are

assumed to be uniformly distributed in space.

5.1.2 The Secondary Process

The emergency calls are simulated as a Poisson point process inside a circle, centered at the

corresponding primary event that generated the calls. For each cluster, we need to model

(1) the number of calls, (2) the time between each call and the emergency event, and (3) the

location of the emergency calls.

5.1.3 Number of emergency calls

Each cluster’s circle is defined by a radius r > 0 and an intensity i > 0. The intensity

indicates the number of points per unit area; thus the number of secondary points (n) is

n = π · r2 · i

Our model captures the varying magnitudes of emergency events through the use of

prototypes that define the radius and intensity of the secondary process. In practice, the

specific values and the rate of occurrence of the prototypes would be determined by the

incidents and call patterns observed at the PSAPs being studied. The parameters of the

secondary process are then drawn from a normal distribution that aligns with the selected

prototype.

Given a prototype radius’s mean (µr) and standard deviation (σr), the cluster radius is

defined as

R ∼ N (µr, σ
2
r)

where R follows a normal distribution. Likewise, from a prototype intensity’s mean (µi) and

standard deviation (σi), a normally distributed intensity is defined as

I ∼ N (µi, σ
2
i)

40

5.1.4 Time interval between each call

We address the distribution of calls in time as follows. If T is a random variable representing

the interval between each emergency call, then

T ∼ Exp(σt)

where T follows an exponential distribution with a rate parameter of σt. Subsequently, the

cumulative sum of T (t1, t1 + t2, ..., t1 + t2 + t3 + ... + tn) is added to the timestamp of the

emergency incident to compute the times of occurrence of each of the n emergency calls.

5.1.5 Location of emergency calls

For the spatial domain, the emergency calls are uniformly distributed within a circle. To

achieve this, polar coordinates consisting of an angle (θ) and a radius (ρ) are drawn from

uniform distributions. The distribution of angle values (θ) is proportional to 2π; whereas,

the area of a circle is proportional to the square of its radius (Area = π · r2). Therefore,

if U and V are two independent uniform random variables on the interval (0, 1), the polar

coordinates of points uniformly located on a circle of radius r are given by

(ρ, θ) = (r ·
√
U, 2π · V)

The polar to Cartesian coordinates conversion can then be done via the following trigono-

metric functions:

x = ρ · cos(θ)

y = ρ · sin(θ)

The complete algorithm for synthesizing the secondary events for the cluster point process

is presented in algorithm 1.

5.2 Call Abandonment

A customer who calls when all call takers are busy is placed in a waiting queue (see Sec-

tion 4.2); those who run out of patience before their call gets answered, hang up. This

41

Algorithm 1 Generating secondary events

1: for all prim event in prim events do

2: Select µr, σr, µi, and σi from a prototype

3: Sample R from a normal distribution N (µr, σ
2
r)

4: Sample I from a normal distribution N (µi, σ
2
i)

5: Calculate n = π ·R2 · I

6: for all n secondary points do

7: Sample T from exponential distribution with rate σt

8: Sample U from a uniform distribution between 0 and 1

9: Sample V from a uniform distribution between 0 and 1

10: Calculate (ρ, θ) = (r
√
U, 2π · V)

11: Calculate (x, y) = (ρ · cos(θ), ρ · sin(θ))

12: Calculate t = prim event(t) + cumulative sum(T)

13: end for

14: end for

15: return sec events(t, x, y)

42

process is known as abandonment. Palm [38] developed Palm/Erlang-A that incorporates

call abandonment into the Erlang-C equation. In the Erlang-A model, each call arrival is

associated with an exponentially distributed patience time with mean θ−1 and gets an of-

fered waiting time in the queue. If the waiting time exceeds the patience time, the call is

considered abandoned [28].

The importance of incorporating call abandonment into a model is illustrated by Gans

et al. [17] and Mandelbaum and Zeltyn [28]. Gans et al. [17] used the Erlang A queuing

model to demonstrate that, during heavy traffic, even a small fraction of abandoned calls

can greatly affect system performance. Likewise, Mandelbaum and Zeltyn [28] showed that

in a heavily loaded call center, 3.1% abandonment reduces the average speed of answer from

8.8 seconds to 3.7 seconds. This reduction occurs because abandonment effectively decreases

the workload precisely when it is most needed.

In our models, we adopt an exponentially distributed patience time. However, estimating

the abandonment rate θ presents the difficulty of not being directly observable. The patience

time is only measurable for customers who abandon the queue before being served, whereas

the waiting time represents only a lower bound of the patience time for those who receive

service. Here, we implement the practical method suggested by Mandelbaum and Zeltyn [28]

for estimating patience time, which is based on the relationship between the average wait in

the queue (E[W]) and the fraction of customers that abandon it (P{Ab}). From this, θ is

estimated as

θ =
P{Ab}
E[W]

=
AbandonmentFraction

AverageWait

5.3 Redial

If all call takers and trunks (phone lines) are busy when a customer initiates a call, they

receive a busy signal and the call is dropped. NENA uses the Extended Erlang-B equation

for the estimation of Offered Call Volume when determining the staffing needs of PSAPs.

The advantage of the Extended Erlang-B equation is that it allows for the consideration of

43

call redials, which NENA estimates to be at least 85% of the time [39]. It is also expected

that the redialing occurs immediately because this is the case of a person experiencing an

emergency, in desperate need for their call to go through.

In this thesis, the redialing decision is represented by a discrete random variable (Rd)

that follows a Bernoulli distribution with a probability of success of P = 0.85.

Rd ∼ Bernoulli(0.85)

based on NENA’s staffing policy document [39].

The redialing probability could be fitted to the data of a given region if one obtains

call data that uniquely identifies the callers. However, obtaining call data with unique

identifiers from the 911 system was unfeasible for this work due to technical obstacles, privacy

considerations, and legal compliance issues.

5.4 Service Time

In Emergency Services Communication Systems (ESCS), the service time represents the

interval between the initial call answer and the dispatch of a responder to the emergency

incident. Here, the service time is assumed to follow an exponential distribution and is pre-

determined at the outset of the simulation. The average service time used in the simulations,

implemented for this thesis, was derived from call data acquired from the Seattle Police De-

partment PSAP of September 2020. This dataset encompassed 41,217 records, showcasing

an average service time of 205 seconds with a standard deviation of 222 seconds.

5.5 Responder Dispatch and Response Time

The dispatch of responders starts with selecting the most suitable one for a given emergency

event. This involves consideration of responder availability, expertise, and proximity to the

event. In the modeling framework developed for this thesis, responder units are dispatched

from different stations, with priority given to the unit stationed closest to the emergency

incident.

44

To enhance simulation realism, emergency calls, and therefore responses, are categorized

into one of three types:

1. Law: Incidents requiring a police response.

2. EMS: Incidents requiring an Emergency Medical Service response.

3. Fire: Incidents requiring a fire unit response.

The implementation methodology adopted in this thesis uses incident-type ratios derived

from the 2022 report of the North East King County Regional Public Safety Communication

Agency (NORCOM). According to their reporting, incidents can be classified as 64% Law-

related and 36% distributed between EMS and Fire [37].

The time during which a response unit remains occupied, following a successful dispatch,

includes both the driving time to the incident location and the on-site time dedicated to

addressing the emergency. The driving time is determined by calculating the time it takes

for a responder to cover the Euclidean distance between the dispatching center and the

incident location. Although this approach represents a simplified assumption, it serves as

an initial approximation in the models, providing a foundation for potential refinements in

future research.

The duration of on-site time is assumed to be exponentially distributed, with an average

of 20 minutes considered reasonable based on prior research studies. Notably, a study in five

regions of the Western Cape reported an overall average on-scene time of 27.55 minutes [51],

and Emergency Medical personnel in Mississippi reported an average on-scene time of 14.67

minutes [11]. Moreover, a study by Vincent-Lambert and Mottershaw [52] highlighted that

medical providers should ideally spend no more than 20 minutes at the emergency scene.

5.6 Dealing with Outliers in Exponential Distributions

Drawing random variables from probability distribution introduces the potential of including

undesirable outliers. In normal distributions, those outliers can be removed by excluding

45

values that fall outside of the range of three standard deviations above and below the median.

However, there is no standard method for calculating outliers in exponential distributions.

The method used in this thesis for removing outliers consists of calculating lower and

upper fences, where values falling outside their defined range are excluded [44]. The lower

fence of an exponential distribution is effectively 0 thus only the upper fence needs to be

computed. Tukey’s boxplots present a practical method for estimating the upper fence, which

is calculated as 1.5 times the interquartile range (IQR) above the third quartile (Q3). For an

exponential distribution with a rate parameter (λ), those values can be estimated as follows:

UF = Q3 + 1.5 ∗ IQR

Q3 = ln(4)/λ

IQR = ln(3)/λ

The application of Tukey’s boxplot method, as outlined in this work, offers a robust

approach to mitigate the introduction of outliers when generating random variables from ex-

ponential distributions. This ensures that simulations maintain a realistic and representative

distribution of data in stochastic processes.

46

Chapter 6

RESULTS

This chapter is focused on verifying the software implementation and evaluating the ef-

fectiveness of the models developed in this thesis for capturing the fundamental behavior of

an Emergency Services Communication System (ESCS). It includes the process of assessing

that the implementation matches the described mathematical models (Chapter 4 and Chap-

ter 5) and an illustrative application that describes the calibration of parameters using real

data, presents metrics for analyzing simulation results, and demonstrates a behavior that

aligns with the real world (Section 6.2).

6.1 Models Verification

Verification is the process of checking that the software implementation meets the product

specifications. In this thesis, the specifications are given by the definition and design of the

ESCS models. The verification process consisted of two activities. First, unit tests were

used to verify the behavior of individual components, independently from other parts, such

as the implementation of a GraphManager, Inputmanager, and CircularQueue. Second, a

911 simulation small enough to be traced by hand was set up and executed, and the output

was confirmed to be as expected.

The unit tests were developed using the GoogleTest framework which is incorporated

into Graphitti’s development process, where changes to the codebase must pass a set of unit

tests before being incorporated into the main branch of the repository.

Similarly to unit tests, Graphitti also incorporates regression tests where the outputs of

multiple test simulations are verified against their known-good outputs before changes can be

incorporated into the codebase. Accordingly, a test simulation of a small ESCS was developed

47

Type # Nodes Description

PSAP 1 4 Servers and 5 Trunks (Phone Lines)

Responder 9 3 EMS, 4 Law, and 2 Fire nodes

Caller Region 1 With grid that matches the Seattle PD service boundaries

Table 6.1: Small 911 simulation network, used to verify the ESCS models implementation.

to serve as a regression test for the NG911 models. The simulation setup is presented in

Table 6.1, consisting of 1 PSAP, 1 Caller Region, and 9 Responder nodes.

A list of 20 calls was created to test the correct implementation of the models described in

this thesis. The complete list of calls with the values for time of occurrence, duration, location

(x,y), type, patience time, and on-site time is presented in Appendix A. The simulation was

set to run for 30 minutes of simulation time to guarantee that all 20 calls were recorded

given that calls are only recorded after being processed, either successfully served, dropped,

or abandoned. The values for the calls’ time of occurrence and duration were selected to

ensure that the simulation yields 1 abandoned call, and 1 dropped call (which is immediately

redialed) for a PSAP with 4 servers and 5 trunks (Table 6.1). Whereas, patience and on-

site time were both drawn from exponential distributions with parameters as described in

Section 6.2. In addition, the x and y locations of calls and responder nodes were selected to

ensure that each node receives at least one dispatch order during the simulation.

The hand-traced expected results for this small 911 simulation and its comparison to the

simulation output is presented in Appendix A. After tracing by hand and confirming the

correctness of the simulation output, this simulation became a regression test for Graphitti

thus providing a solid foundation for future developers.

48

Type # Nodes Description

PSAP 1 6 Servers and 16 Trunks

Responder 73 34 EMS, 5 Law, and 34 Fire

Caller Region 1 Seattle PD Service boundaries

Table 6.2: Seattle PD ESCS network, used to demonstrate the ESCS models applicability.

6.2 Illustrative Application

To demonstrate the applicability of our graph-based simulation framework, we developed

a graph representation of the ESCS network of King County, Washington, extracted from

a Geographic Information System (GIS) dataset (provided by the Washington State 911

Coordination Office) comprised of five layers that map the boundaries of PSAPs, police, fire,

and EMS services. For a complete simulation, we focused on the Seattle Police Department

(PD) ESCS network composed of 1 PSAP, 34 Fire Stations (also providing EMS services),

and 5 Police stations (shown in Table 6.2). The Seattle PD PSAP, now known as Community

Assisted Response and Engagement (CARE), is the largest of the 12 PSAPs in King County,

serving about 10% of all 911 calls.

A month-long dataset composed of 41,217 calls with a call rate of 57.25 calls/hr was

used to parameterize the discrete event queuing model for CARE. The dataset revealed a

maximum hourly call rate of 137, an abandonment rate of 9.42%, a average wait time of 4.7

seconds, and call durations ranging from 4 to 2016 seconds (204 seconds average). Using

Erlang equations, estimations suggest a need for 6 call takers, considering a 10-second caller

waiting tolerance (Erlang C), and 16 trunk lines to manage a 1% probability of blocking

during peak times with an additional 10 seconds of service time for post-processing.

Table 6.3 presents the values of the parameters used for the simulation runs of this il-

lustrative application. We conducted simulations using one month of synthetic call data

generated through the cluster point process algorithm discussed in Section 5.1. These sim-

49

Parameter Value

Simulation Length 1 month

Servers 6

Trunks 16

Redial Probability 0.85

Average Patience Time 49.36 sec

Min Service Time 4 sec

Average Service Time 204 sec

Average On-Scene Time 20 min

Call Arrival Rates 45.6 to 84.2 calls/hr in 10% increments

Table 6.3: Parameters used for the illustrative application simulation runs. The cluster point

process model described in Section 5.1 is used to generate the various call arrival rates.

ulations used call arrival rates ranging from 45.6 to 84.2 calls/hr in 10% increments, which

were simulated by varying the rate of the primary process of a cluster point process. Other

parameters were kept consistent throughout the simulations. The redial probability used

was 85% with an average patience time of 49.36 seconds (see Section 5.2). Additionally, the

average on-scene duration was set at 20 minutes (see Section 5.5), whereas the minimum and

average service times were set to 4 and 204 seconds, respectively.

The selected metrics for analyzing simulation results were customer waiting time and

system utilization. System utilization is defined as the fraction of call-takers or responder

units busy at any given time. The abandonment rate, being a by-product of system saturation

or over-utilization, is also considered in our analysis.

Utilization histograms in Figure 6.1 are presented for the different arrival rates. At 45.6

calls/hr, the system surpasses 80% utilization merely 11.9% of the time, coinciding with an

average waiting time of 6.8 seconds. As the arrival rate grows to 84.2 calls/hr, elevating

50

32.9%

24.2%

0.0%

15.5%

0.0%

9.9%

5.6%

0.0%

3.9%

8.0%

0 0.2 0.4 0.6 0.8 1

Utilization ratio

0

1

2

3

4

5

6

7

8

9

F
re

qu
en

cy
 (

hu
nd

re
ds

 o
f t

ho
us

an
ds

 o
f o

bs
er

va
tio

ns
)

#10 5

(a) Arrival rate = 45.6 calls/hr

22.1%
21.6%

0.0%

17.0%

0.0%

12.7%

8.3%

0.0%

6.0%

12.4%

0 0.2 0.4 0.6 0.8 1

Utilization ratio

0

1

2

3

4

5

6

F
re

qu
en

cy
 (

hu
nd

re
ds

 o
f t

ho
us

an
ds

 o
f o

bs
er

va
tio

ns
)

#10 5

(b) Arrival rate = 63 calls/hr

16.5%

19.4%

0.0%

17.6%

0.0%

13.7%

9.6%

0.0%

7.3%

15.9%

0 0.2 0.4 0.6 0.8 1

Utilization ratio

0

1

2

3

4

5

6

F
re

qu
en

cy
 (

hu
nd

re
ds

 o
f t

ho
us

an
ds

 o
f o

bs
er

va
tio

ns
)

#10 5

(c) Arrival rate = 76 calls/hr

12.7%

17.6%

0.0%

17.6%

0.0%

14.4%

10.4%

0.0%

8.6%

18.7%

0 0.2 0.4 0.6 0.8 1

Utilization ratio

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

F
re

qu
en

cy
 (

hu
nd

re
ds

 o
f t

ho
us

an
ds

 o
f o

bs
er

va
tio

ns
)

#10 5

(d) Arrival rate = 84.2 calls/hr

Figure 6.1: Call arrival rate impact on system utilization

51

Servers Avg. Wait (sec.) Abandonment (%)

6 9.27 27

7 7.8 22

8 6.6 18

9 5.5 15

10 4.6 12

Table 6.4: Impact of the number of servers on wait time and abandonment rate. All simu-

lations used 76 calls/hr and 11 for the call arrival rate and number of trunks, respectively.

utilization to 27% above 80%, the average waiting time increases moderately to 9.4 seconds.

However, at this threshold the abandonment rate triples from 9 to 27.3%.

When the call arrival rate reached 76 calls/hr the system started showing signs of satura-

tion. At this arrival rate, the average wait time was only 9.27 seconds but the abandonment

rate had already climbed to 27%, showing the impact of the abandonment process on keeping

the waiting time relatively stable.

Considering that a PSAP with 6 servers and 16 trunks displayed a high abandonment

rate of 27%, under the 76 calls/hr arrival rate. We subsequently searched for the number of

servers needed to bring the abandonment rate to a more reasonable level. Therefore, we ran

simulations with 7, 8, 9, and 10 servers, keeping all other parameters unvaried.

Table 6.4 presents the average wait time (in seconds) and the abandonment rate for

simulations ran with 6, 7, 8, 9, and 10 servers, keeping all other parameters the same.

With only adding 3 more servers, the abandonment rate improved by 45% (from 27 to

15%). Pairing the abandonment rate improvement with the system utilization histogram

presented in Figure 6.2, one notices that the 9-servers simulation also displays the best

system utilization above 80% (11.5%).

Note that the number of trunks for all the simulations was kept at 16. Therefore, the

52

16.2%

19.2%

17.5%

0.0%

13.4%

9.4%

0.0%

6.5%

5.2%

12.6%

0 0.2 0.4 0.6 0.8 1

Utilization ratio

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

F
re

qu
en

cy
 (

hu
nd

re
ds

 o
f t

ho
us

an
ds

 o
f o

bs
er

va
tio

ns
)

#10 5

(a) Servers = 7

16.1%

19.2%

17.3%

13.3%

0.0%

9.2%

6.3%

4.5%
4.0%

10.2%

0 0.2 0.4 0.6 0.8 1

Utilization ratio

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

F
re

qu
en

cy
 (

hu
nd

re
ds

 o
f t

ho
us

an
ds

 o
f o

bs
er

va
tio

ns
)

#10 5

(b) Servers = 8

16.0%

19.1%

17.2%

13.2%

9.1%

6.1%

4.3%
3.4% 3.3%

8.2%

0 0.2 0.4 0.6 0.8 1

Utilization ratio

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

F
re

qu
en

cy
 (

hu
nd

re
ds

 o
f t

ho
us

an
ds

 o
f o

bs
er

va
tio

ns
)

#10 5

(c) Servers = 9

16.0%

19.0%

30.3%

0.0%

9.0%
10.2%

3.2%

0.0%

2.8%

9.4%

0 0.2 0.4 0.6 0.8 1

Utilization ratio

0

1

2

3

4

5

6

7

8

F
re

qu
en

cy
 (

hu
nd

re
ds

 o
f t

ho
us

an
ds

 o
f o

bs
er

va
tio

ns
)

#10 5

(d) Servers = 10

Figure 6.2: Impact of the number of servers on system utilization. All simulations used 76

calls/hr and 11 for the call arrival rate and number of trunks, respectively.

53

34.9%

0.0%

65.0%

0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0%

4 4.5 5 5.5 6 6.5 7 7.5 8

Wait Time (s)

0

0.5

1

1.5

2

2.5

F
re

qu
en

cy
 (

te
ns

 o
f t

ho
us

an
ds

 o
f o

bs
er

va
tio

ns
)

#10 4

(a) Real world

90.9%

4.1% 2.6% 1.4% 0.6% 0.2% 0.1% 0.0% 0.0% 0.0%

0 20 40 60 80 100 120 140 160 180

Wait Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

4

F
re

qu
en

cy
 (

te
ns

 o
f t

ho
us

an
ds

 o
f o

bs
er

va
tio

ns
)

#10 4

(b) Simulation

Figure 6.3: Wait time histograms of the real and simulated Seattle PD PSAP.

waiting queue shortens as we add more servers to the system. The impact of the size of the

waiting queue on utilization is that as the system reaches saturation levels calls are more

likely to be dropped but because of the high redial probability (0.85), these dropped calls

come back into the system most of the time. We must also consider that the cluster point

process, used to generate the call arrival process, creates clusters of calls closed in time that

might momentarily saturate the system. Consequently, the system utilization is kept high

once the system reaches saturation levels until the arrival rates goes down, which explains

the spikes above 90% utilization in the histograms of both Figure 6.1 and Figure 6.2.

Certain metrics stored in simulations may not be feasible or practical to measure in real-

world systems, such as system utilization. Although these metrics enable a more comprehen-

sive performance evaluation, their absence in real system data complicates the assessment

of how accurately the models reflect real-world behavior. One consistently recorded metric

in ESCSes is the wait time, providing a basis for comparing real-world and simulated Seat-

tle PD PSAP behavior. Figure 6.3 illustrates histograms of wait times for both the real

54

and simulated Seattle PD PSAP outputs. In the real system, wait times were consistently

between 4 and 5 seconds, with none exceeding 8 seconds, while in the simulated system,

wait times reached up to 180 seconds, with 86.3% being less than 6 seconds and 90.9% less

than 20 seconds. This disparity in wait time distributions likely stems from differences in

staffing policies: the Seattle PD PSAP staffing is designed to maintain very low wait times,

whereas the simulation uses minimum staffing based on the one-month average call arrival

rate estimated using the Erlang C equation. The challenge of determining an appropriate

staffing policy underscores the need to obtain comprehensive data, including information on

caller and responder dynamics as well as staffing patterns, from the 911 PSAPs.

This illustrative application is meant to showcase the capabilities of the presented models

for simulation and analysis of ESCSes. As such, the analysis of the responder nodes in the

network are beyond the scope of this work; although, the same analysis of utilization, wait

time, and abandonment rate can be applied.

6.2.1 Runtime scalability

The runtime performance of the one-month Seattle PD PSAP simulation was measured using

a 14-cores Intel i7-12700H 2.3 GHz processor. On average, it took 47 seconds to execute a

one-month simulation for a single PSAP network. Extrapolating this runtime to the 78

PSAPs comprising the Washington State ESCS network, would require approximately 61

minutes to complete a one-month simulation of the statewide 911 network.

A future GPU parallel implementation of these ESCS models has the potential to sig-

nificantly reduce the simulation’s runtime. However, as noted by Shi et al. [41], the size of

large-scale graphs might present a challenge for GPU processing due to memory limitations.

We argue that ESCS networks are known and not expected to reach the size of billions

of vertices and edges, such as the Twitter and Youtube datasets used by Shi et al. [41].

Considering that the size of ESCS networks is not expected to exceed GPU memory, the

improvement in runtime scalability of the GPU would enable researchers to execute longer

simulations involving larger networks in a matter of minutes rather than hours.

55

Chapter 7

CONCLUSION

The primary objective of this thesis was to develop simulation models serving as the

basis for Emergency Services Communication Systems (ESCSes) simulations. Achieving this

goal involved identifying and examining the components of the 911 system, designing an

architectural framework, and choosing suitable mathematical models to represent its diverse

stochastic processes. As a result, the most significant contribution of this thesis is the

architectural framework and model abstractions that define various aspects of ESCSes.

7.1 Architectural Framework

This thesis introduced a detailed architectural framework that models the components of an

ESCS as a graph-based system. This graph forms the foundation for a set of Communicating

Finite State Machines (CFSM) that operate within a discrete event queuing system.

The architectural framework that emerges from the model’s implementation enhances

Graphitti’s capabilities by enabling the use of arbitrary graphs and the exploration of diverse

call arrival processes through external files. Additionally, it simplifies the analysis of each

individual vertex behavior, laying the foundation for a future parallel implementation where

each vertex can be treated as a separate thread of execution.

7.2 Mathematical Models

Another novel contribution of this thesis was the modeling of call arrivals as the realization of

a cluster point process that captures burstiness in calls and their proximity to the emergency

events. Beyond this novel contribution, this work also investigated aspects of ESCS that are

frequently overlooked by other models, notably addressing the issues of call abandonments

56

and redial.

7.3 Retrospective

Although the architectural framework and mathematical models presented here effectively

capture the essential aspects of an ESCS, they include necessary simplifications. This is

primarily due to project scope limitations and data acquisition challenges. Acquiring call

and incident data from 911 introduced complexities, including technical obstacles, privacy

considerations, and legal compliance issues. Consequently, simulating a comprehensive real-

world 911 network, like King County, was unfeasible within the designated time frame.

7.4 Future Work

In the context of future research, several key areas merit exploration and development to

enhance the ESCS simulation models presented in this thesis.

Firstly, there is a significant opportunity to implement a parallel GPU version of the exist-

ing CPU model. This adaptation can substantially improve the performance and scalability

of ESCS simulations, allowing for more complex and extensive analyses.

Another promising avenue for research is the exploration of a non-homogeneous Pois-

son process as the primary process within a cluster point process, such as a cyclic non-

homogeneous Poisson process [26]. Law and Kelton [25] present another approach to mod-

eling a non-stationary Poisson process, known as thinning, that might be worth exploring.

Modeling the primary process as a non-stationary Poisson process may provide a more ac-

curate representation of the dynamic nature of emergency call arrivals in ESCS scenarios.

Another implication of a non-stationary Poisson process is that the PSAP staffing policies

would also need to change to have more servers during busier times, approach that is rec-

ommended by Russell and Mazeau [39].

To enhance the realism of ESCS simulation, the development of a more precise math-

ematical model for simulating responder travel time and on-site time is a critical future

endeavor. Similarly, the implementation of mobility for emergency response units is another

57

promising direction. More refined models would contribute to a more faithful representation

of real-world scenarios, thus offering a more adaptable and realistic representation of ESCS

operations.

The current simulation setup involves saving results to an output file for subsequent anal-

ysis, which is effective when assessing various parameter values. However, certain scenarios

demand real-time monitoring of simulation states through a Graphical User Interface (GUI).

For instance, a crucial step in cybersecurity tabletop exercises is assessing the impact of a

mitigation strategy during a cyber-attack simulation. The future implementation of a live

monitoring framework within the simulation can significantly enhance its utility in tabletop

exercises, ensuring real-time assessment, and bolstering its effectiveness.

Lastly, a framework could be developed for generating synthetic, parameterized graphs.

This framework would facilitate further research into various graph characteristics at different

scales and might aid in exploring various graph families.

Further improvements and refinements in the presented models would enhance the devel-

opment of more realistic ESCS simulations. Nonetheless, this work lays a robust foundation

for future research in this area.

58

BIBLIOGRAPHY

[1] S. Anwar, M. Yaseen, and S. A. Mahmood. Higher order gibbs point process modeling of

2005-kashmir earthquakes. Modeling Earth Systems and Environment, 9(1):1335–1347,

oct 2022. doi: 10.1007/s40808-022-01554-9.

[2] B. K. Bal, W. L. Shi, S.-H. S. Huang, and O. Gnawali. Towards a content-based defense

against text ddos in 9–1-1 emergency systems. In 2018 IEEE International Symposium

on Technologies for Homeland Security (HST), pages 1–6. IEEE, 2018.

[3] R. Barnes and B. Rosen. 911 for the 21st century. IEEE Spectrum, 51(4):58–64, 2014.

ISSN 1939-9340. doi: 10.1109/MSPEC.2014.6776307. Conference Name: IEEE Spec-

trum.

[4] R. Barnes, A. Cooper, and H. Tschofenig. Technical considerations for next-generation

911. 2011.

[5] D. Brand and P. Zafiropoulo. On communicating finite-state machines. Association for

Computing Machinery (ACM), 30(2):323–342, 1983. ISSN 0004-5411. Place: New York,

NY Publisher: Association for Computing Machinery.

[6] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. Marshall. GraphML

progress report structural layer proposal. In P. Mutzel, M. Jünger, and S. Leipert,

editors, Graph Drawing, Lecture Notes in Computer Science, pages 501–512. Springer,

2002. ISBN 978-3-540-45848-7. doi: 10.1007/3-540-45848-4 59.

[7] F. C. Commission. Legal and Regulatory Framework for Next Generation 911 Services.

Report to Congress and Recommendations 112-96, Federal Communications Commis-

sion, Feb. 2013.

59

[8] D. Corral-De-Witt, E. V. Carrera, J. A. Matamoros-Vargas, S. Munoz-Romero, J. L.

Rojo-Alvarez, and K. Tepe. From e-911 to NG-911: Overview and challenges in ecuador.

IEEE Access, 6:42578–42591, 2018. doi: 10.1109/access.2018.2858751. Publisher: Insti-

tute of Electrical and Electronics Engineers (IEEE).

[9] P. S. P. Cowpertwait, C. G. Kilsby, and P. E. O'Connell. A space-time neyman-scott

model of rainfall: Empirical analysis of extremes. Water Resources Research, 38(8):

6–1–6–14, aug 2002. doi: 10.1029/2001wr000709.

[10] Dajer, Antonio J., Lopez, Fred A., Baker, Todd, Toscano, Joseph D., Scalea, Thomas

M., Todd, Knox H., Rao, Rama B., Rund, Douglas, Kman, Nicholas E., and Slovis,

Corey M. Disaster Preparedness 10 Years After 9/11 The Experts Weigh In. Emergency

Medicine, Sept. 2011.

[11] G. David and T. Brachet. Retention, learning by doing, and performance in emergency

medical services. Health Services Research, 44(3):902–925, June 2009. ISSN 1475-6773.

doi: 10.1111/j.1475-6773.2009.00953.x.

[12] T. I. Dayharsh, T. J. Yung, D. K. Hunter, and S. C. Ivy. Update on the national

emergency number 911. IEEE Transactions on Vehicular Technology, 28(4):292–297,

1979. ISSN 19399359. doi: 10.1109/T-VT.1979.23804.

[13] B. Dearstyne. The FDNY on 9/11: Information and decision making in crisis. Gov-

ernment Information Quarterly, 24(1):29–46, Jan. 2007. ISSN 0740-624X. doi: 10.

1016/j.giq.2006.03.004. URL https://www.sciencedirect.com/science/article/

pii/S0740624X06000505.

[14] U. Desai, S. Alagesan, A. Goulart, and W. Magnussen. Performance of secure sip and

lost signaling in a next generation 9–1–1 testbed. In 2012 IEEE International Workshop

Technical Committee on Communications Quality and Reliability (CQR), pages 1–6.

IEEE, 2012.

https://www.sciencedirect.com/science/article/pii/S0740624X06000505
https://www.sciencedirect.com/science/article/pii/S0740624X06000505

60

[15] T. Doumi, M. F. Dolan, S. Tatesh, A. Casati, G. Tsirtsis, K. Anchan, and D. Flore.

LTE for public safety networks. IEEE Communications Magazine, 51(2):106–112, 2013.

ISSN 01636804. doi: 10.1109/MCOM.2013.6461193.

[16] J. W. Farnham. Disaster and emergency communications prior to computers/internet:

a review. Critical Care, 10(1):207, 2005. ISSN 1364-8535. doi: 10.1186/cc3944. URL

https://doi.org/10.1186/cc3944.

[17] N. Gans, G. Koole, and A. Mandelbaum. Telephone call centers: Tutorial, review, and

research prospects. Manufacturing & Service Operations Management, 5(2):79–141,

2003.

[18] GEXF Working Group. GEXF file format, 2009. URL https://gexf.net/.

[19] L. Gómez, R. Budelli, R. Saa, M. Stiber, and J. P. Segundo. Pooled spike trains of

correlated presynaptic inputs as realizations of cluster point processes. bc, 92(2):110–

127, Feb. 2005.

[20] K. Gustavsson. Stochastic Modeling and Management of an Emergency Call Center.

PhD thesis, Mid Sweden University, 2018.

[21] K. Gustavsson, P. L’Ecuyer, and L. Olsson. Modeling bursts in the arrival process to

an emergency call center. 2018.

[22] Industry Council for Emergency Response Technologies. History of 911: And what

it means for the future of emergency communications. Technical report, 2016. URL

https://perma.cc/YL97-9J9C.

[23] J. Jalving, Y. Cao, and V. M. Zavala. Graph-based modeling and simulation of com-

plex systems. Computers & Chemical Engineering, 125:134–154, 2019. ISSN 00981354.

doi: 10.1016/j.compchemeng.2019.03.009. URL https://linkinghub.elsevier.com/

retrieve/pii/S0098135418312687.

https://doi.org/10.1186/cc3944
https://gexf.net/
https://perma.cc/YL97-9J9C
https://linkinghub.elsevier.com/retrieve/pii/S0098135418312687
https://linkinghub.elsevier.com/retrieve/pii/S0098135418312687

61

[24] D. LaRocque. GraphSON format, 2014. URL https://github.com/thinkaurelius/

faunus/wiki/GraphSON-Format.

[25] A. M. Law and W. D. Kelton. Simulation modeling and analysis. McGraw-Hill series

in industrial engineering and management science. McGraw-Hill, 3rd ed edition, 2000.

ISBN 978-0-07-059292-6.

[26] S. Lee, J. R. Wilson, and M. M. Crawford. Modeling and simulation of a non-

homogeneous poisson process having cyclic behavior. Communications in Statistics

- Simulation and Computation, 20(2-3):777–809, Jan. 1991. ISSN 0361-0918. doi:

10.1080/03610919108812984. URL https://doi.org/10.1080/03610919108812984.

[27] F. Liberal, J. O. Fajardo, C. Lumbreras, and W. Kampichler. European NG112

crossroads: Toward a new emergency communications framework. IEEE Communi-

cations Magazine, 55(1):132–138, 2017. ISSN 1558-1896. doi: 10.1109/MCOM.2017.

1600301CM. Conference Name: IEEE Communications Magazine.

[28] A. Mandelbaum and S. Zeltyn. Service Engineering in Action: The Palm/Erlang-A

Queue, with Applications to Call Centers, pages 17–45. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2007. ISBN 978-3-540-29860-1. doi: 10.1007/978-3-540-29860-1 2.

URL https://doi.org/10.1007/978-3-540-29860-1_2.

[29] G. Marin and D.-P. Pop. The european emergency number 112. Journal of Information

Systems & Operations Management, 3(1):173–184, 2009. URL https://ideas.repec.

org//a/rau/jisomg/v3y2009i1p173-184.html. Publisher: Romanian-American Uni-

versity.

[30] E. K. Markakis, A. Lykourgiotis, I. Politis, A. Dagiuklas, Y. Rebahi, and E. Pallis.

EMYNOS: Next generation emergency communication. IEEE Communications Maga-

zine, 55(1):139–145, 2017. doi: 10.1109/mcom.2017.1600284cm. Publisher: Institute of

Electrical and Electronics Engineers (IEEE).

https://github.com/thinkaurelius/faunus/wiki/GraphSON-Format
https://github.com/thinkaurelius/faunus/wiki/GraphSON-Format
https://doi.org/10.1080/03610919108812984
https://doi.org/10.1007/978-3-540-29860-1_2
https://ideas.repec.org//a/rau/jisomg/v3y2009i1p173-184.html
https://ideas.repec.org//a/rau/jisomg/v3y2009i1p173-184.html

62

[31] J. Martinez, christopherdokeefe, M. Stiber, J. Brown, V. Gandhi, M. Sorvik, T. Sal-

vatore, D. Kamath, P. Pal (PoojaPal2021), K. Dukart, V. Verma, R. Sarcevic,

J. Kim, AlexNeary, xiang coding, C. McIntosh, S. KUMAR, rashwini21, uw-theo,

L. Zee, S. Wong (”Phoenix”), Andrzej-Dawiec, BenYang2002, and Surendran. UWB-

Biocomputing/Graphitti: It’s 2017 in 2023, June 2023. URL https://doi.org/10.

5281/zenodo.8087930.

[32] Y. Mirsky and M. Guri. Ddos attacks on 9-1-1 emergency services. IEEE Transactions

on Dependable and Secure Computing, 18(6):2767–2786, 2021. ISSN 1545-5971.

[33] National Emergency Number Association (NENA) and others. NENA standard for 9-1-1

call processing, 2020.

[34] National Emergency Number Association (NENA) 911 Core Services Committee and i3

Architecture Working Group. NENA i3 standard for next generation 9-1-1. Technical

report, National Emergency Number Association, 2021.

[35] S. R. Neusteter, M. Mapolski, M. Khogali, and M. O’toole. The 911 call processing

system: A review of the literature as it relates to policing. Vera Institute Of Justice,

pages 240–254, 2019. doi: 10.4324/9781003027508-21.

[36] J. Neyman and E. L. Scott. Statistical approach to problems of cosmology. Journal of the

Royal Statistical Society. Series B (Methodological), 20(1):1–43, 1958. ISSN 00359246.

URL http://www.jstor.org/stable/2983905.

[37] North East King County Regional Public Safety Communications (NORCOM) Agency.

NORCOM 2022 Annual Report. Technical report, NORCOM, 2022. URL https://

www.norcom.org/wp-content/uploads/2023/04/NORCOM-2022-Annual-Report.pdf.

[38] R. C. A. Palm. Research on telephone traffic carried by full availability groups. Tele,

1957.

https://doi.org/10.5281/zenodo.8087930
https://doi.org/10.5281/zenodo.8087930
http://www.jstor.org/stable/2983905
https://www.norcom.org/wp-content/uploads/2023/04/NORCOM-2022-Annual-Report.pdf
https://www.norcom.org/wp-content/uploads/2023/04/NORCOM-2022-Annual-Report.pdf

63

[39] R. Russell and D. Mazeau. PSAP staffing guidelines report. Technical Report NENA-

REF-001-2003, National Emergency Number Association, 2003. URL https://www.

nena.org/resource/resmgr/standards/NENA-REF-001-2003_PSAP_Staff.pdf.

[40] R. F. Serfozo. Chapter 1 point processes. In Stochastic Models, volume 2 of Hand-

books in Operations Research and Management Science, pages 1–93. Elsevier, 1990. doi:

https://doi.org/10.1016/S0927-0507(05)80165-3. URL https://www.sciencedirect.

com/science/article/pii/S0927050705801653.

[41] X. Shi, Z. Zheng, Y. Zhou, H. Jin, L. He, B. Liu, and Q.-S. Hua. Graph Processing

on GPUs: A Survey. ACM Computing Surveys, 50(6):81:1–81:35, Jan. 2018. ISSN

0360-0300. doi: 10.1145/3128571. URL https://dl.acm.org/doi/10.1145/3128571.

[42] J. Shimkus. H.R.438 - 106th Congress (1999-2000): Wireless Communications and

Public Safety Act of 1999, Feb. 1999. URL https://www.congress.gov/bill/

106th-congress/house-bill/438. Archive Location: 1999-02-02.

[43] J. G. Siek, L.-Q. Lee, and A. Lumsdaine. Boost Graph Library, The:

User Guide and Reference Manual. Addison-Wesley Professional., 1st edi-

tion, 2001. ISBN 978-0-13-265183-7. URL https://www.informit.com/store/

boost-graph-library-user-guide-and-reference-manual-9780132651837.

[44] C. H. Sim, F. F. Gan, and T. C. Chang. Outlier Labeling With Boxplot Proce-

dures. Journal of the American Statistical Association, 100(470):642–652, June 2005.

ISSN 0162-1459. doi: 10.1198/016214504000001466. URL https://doi.org/10.1198/

016214504000001466.

[45] R. Simon and S. Teperman. The world trade center attack: Lessons for disaster man-

agement. Critical Care, 5(6):318–320, 2001. ISSN 1364-8535. doi: 10.1186/cc1060. URL

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC137379/.

https://www.nena.org/resource/resmgr/standards/NENA-REF-001-2003_PSAP_Staff.pdf
https://www.nena.org/resource/resmgr/standards/NENA-REF-001-2003_PSAP_Staff.pdf
https://www.sciencedirect.com/science/article/pii/S0927050705801653
https://www.sciencedirect.com/science/article/pii/S0927050705801653
https://dl.acm.org/doi/10.1145/3128571
https://www.congress.gov/bill/106th-congress/house-bill/438
https://www.congress.gov/bill/106th-congress/house-bill/438
https://www.informit.com/store/boost-graph-library-user-guide-and-reference-manual-9780132651837
https://www.informit.com/store/boost-graph-library-user-guide-and-reference-manual-9780132651837
https://doi.org/10.1198/016214504000001466
https://doi.org/10.1198/016214504000001466
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC137379/

64

[46] J. M. Stevens, T. C. Webster, and B. Stipak. Response Time: Role in Assessing Police

Performance. Public Productivity Review, 4(3):210–230, 1980. ISSN 0361-6681. doi:

10.2307/3379854. URL https://www.jstor.org/stable/3379854. Publisher: Taylor

& Francis, Ltd.

[47] M. Stiber, F. Kawasaki, D. Davis, H. Asuncion, J. Lee, and D. Boyer. Brain-

Grid+Workbench: High-performance/high-quality neural simulation. In Proc. Inter-

national Joint Conference on Neural Networks, Anchorage, Alaska, May 2017.

[48] T. Stratmann and D. C. Thomas. Dial 911 for murder: The impact of emergency

response time on homicides. SSRN Electronic Journal, 2016. doi: 10.2139/SSRN.

2877078. URL https://papers.ssrn.com/abstract=2877078. Publisher: Elsevier

BV.

[49] Task Force on Optimal PSAP Architecture (TFOPA). Task force on optimal

psap architecture adopted final report. Technical Report DA-16-179, Federal

Communications Commission, Jan. 2016. URL https://www.fcc.gov/document/

fcc-releases-tfopa-final-report/report.

[50] The GraphML Team. The GraphML file format, 2019. URL http://graphml.

graphdrawing.org/index.html.

[51] M. Vanderschuren and D. McKune. Emergency care facility access in rural areas within

the golden hour?: Western Cape case study. International Journal of Health Geo-

graphics, 14(1):5, Jan. 2015. ISSN 1476-072X. doi: 10.1186/1476-072X-14-5. URL

https://doi.org/10.1186/1476-072X-14-5.

[52] C. Vincent-Lambert and T. Mottershaw. Views of emergency care providers about

factors that extend on-scene time intervals. African Journal of Emergency Medicine,

8(1):1, Mar. 2018. doi: 10.1016/j.afjem.2017.08.003. URL https://www.ncbi.nlm.

https://www.jstor.org/stable/3379854
https://papers.ssrn.com/abstract=2877078
https://www.fcc.gov/document/fcc-releases-tfopa-final-report/report
https://www.fcc.gov/document/fcc-releases-tfopa-final-report/report
http://graphml.graphdrawing.org/index.html
http://graphml.graphdrawing.org/index.html
https://doi.org/10.1186/1476-072X-14-5
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6223598/

65

nih.gov/pmc/articles/PMC6223598/. Publisher: African Federation for Emergency

Medicine.

[53] G. Wainer. Discrete-Event Modeling and Simulation: A Practitioner’s Approach. Com-

putational Analysis, Synthesis, and Design of Dynamic Systems. CRC Press, 2017. ISBN

9781420053371. URL https://books.google.com/books?id=E0T5dmTrG7EC.

[54] M. Xue and S. Roy. Cyber-physical queueing-network model for risk management in

next-generation emergency response systems, 2021.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6223598/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6223598/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6223598/
https://books.google.com/books?id=E0T5dmTrG7EC

66

Appendix A

VERIFICATION OF SMALL 911 SIMULATION OUTPUT

Table A.1 contains the list of 20 calls used in the small 911 test simulation described in

Chapter 6. The calls’ time of occurrence, duration, and location (x, y) were tailored to test

the correct implementation of the models described in this thesis. Whereas, patience and

on-site time were both drawn from exponential distributions as described in Section 6.2. The

expected results from this simulation, traced by hand, are presented in Table A.3 and can

be compared against the actual simulation results in Listing A.1.

To compare the expected and actual simulation results, the PSAP call log was extracted

into Table A.2. Here, one can verify that the begin, answer, and end times for all the calls

are correct. The answer and end times for the call occurring at 73 seconds of simulation time

are zero because the call is abandoned due to the wait time being longer than the customer’s

patience time. To verify that the correct responder is dispatched, one can verify that the end

time for a given call is present in the list of beginning times for the corresponding responder

vertex.

67

time duration x y type patience on site time

34 230 -122.374820944356 47.6483954827697 EMS 61 3142

37 169 -122.403648760113 47.5583378861826 Fire 3 2032

42 327 -122.385348869295 47.5153247164363 Fire 8 782

47 165 -122.275688766409 47.6790423255801 EMS 9 627

73 262 -122.367015875811 47.5193248411992 EMS 50 1890

130 242 -122.327331103854 47.6570871634272 Law 150 1105

324 209 -122.428429392232 47.5929827626697 Fire 5 603

388 45 -122.377464667327 47.7111396737191 Law 66 182

401 110 -122.450311894902 47.7041426158929 EMS 45 53

435 54 -122.384978533577 47.5859768754596 EMS 139 770

490 259 -122.33562990965 47.6488009024455 Law 77 2142

541 350 -122.375038778789 47.5274803656548 Law 86 510

671 389 -122.438467646611 47.5944297368486 EMS 60 637

900 81 -122.294911773769 47.6088629766148 Fire 57 90

960 53 -122.296485522688 47.6177632023237 Law 113 824

1009 638 -122.355965347492 47.6773160725642 Law 38 81

1106 230 -122.447215747839 47.6093549620811 EMS 16 3378

1110 64 -122.317137239523 47.5453578234151 Fire 8 139

1143 241 -122.393782737017 47.4843154029632 Fire 47 633

1155 180 -122.432330936241 47.6829697374505 Fire 20 967

Table A.1: Small 911 simulation input calls. The time, duration, patience, and on-site time

are all in seconds.

68

Begin Time Answer Time End Time

37 38 207

73 0 0

47 48 213

34 35 265

42 43 370

388 389 434

130 208 450

435 436 490

401 402 512

324 325 534

490 491 750

541 542 892

900 901 982

960 961 1014

671 672 1061

1110 1111 1175

1106 1107 1337

1155 1175 1355

1143 1144 1385

1009 1010 1648

Table A.2: Seattle PD PSAP call log for the small 911 simulation output, used to verify the

ESCS model implementation.

69
S
e
rv

e
rs

–
e
n
d

ti
m
e

C
a
ll

L
o
g

C
a
ll

T
im

e
1

2
3

4
Q
u
e
u
e

A
b
a
n
d
o
n
e
d
?

A
n
sw

e
re
d

E
n
d

T
im

e
R
e
sp

o
n
d
e
r

34
35

26
5

[]

37
38

20
7

[]

42
43

37
0

[]

47
48

21
3

[]

73
74

[7
3]

12
5

[]
Y
es

0
0

13
0

13
1

[1
30
]

20
7

F
in
is
h

[1
30
]

38
20
7

#
8
(F

ir
e)

20
8

45
0

[]

21
3

F
in
is
h

[]
48

21
3

#
3
(E

M
S
)

26
5

F
in
is
h

[]
35

26
5

#
1
(E

M
S
)

32
4

32
5

53
4

[]

37
0

F
in
is
h

[]
43

37
0

#
8
(F

ir
e)

38
8

38
9

43
4

[]

40
1

40
2

51
2

[]

43
4

F
in
is
h

[]
38
9

43
4

#
4
(L
aw

)

43
5

43
6

49
0

[]

45
0

F
in
is
h

[]
20
8

45
0

#
5
(L
aw

)

49
0

F
in
is
h

[]
43
6

49
0

#
2
(E

M
S
)

70
C
a
ll

T
im

e
1

2
3

4
Q
u
e
u
e

A
b
a
n
d
o
n
e
d
?

A
n
sw

e
re
d

E
n
d

T
im

e
R
e
sp

o
n
d
e
r

49
0

49
1

75
0

51
2

F
in
is
h

[]
40
2

51
2

#
1
(E

M
S
)

53
4

F
in
is
h

[]
32
5

53
4

#
9
(F

IR
E
)

54
1

54
2

89
2

67
1

67
2

10
61

75
0

F
in
is
h

49
1

75
0

#
5
(L
aw

)

89
2

F
in
is
h

54
2

89
2

#
7
(L
aw

)

90
0

90
1

98
2

96
0

96
1

10
14

98
2

F
in
is
h

[]
90
1

98
2

#
8
(F

ir
e)

10
09

10
10

16
48

10
14

F
in
is
h

[]
96
1

10
14

#
6
(L
aw

)

10
61

F
in
is
h

[]
67
2

10
61

#
2
(E

M
S
)

11
06

11
07

13
37

11
10

11
11

11
75

11
43

11
44

13
85

11
55

11
56

[1
15
5]

11
75

F
in
is
h

[1
15
5]

11
11

11
75

#
8
(F

ir
e)

13
55

[]

13
37

F
in
is
h

[]
11
07

13
37

#
2
(E

M
S
)

71
C
a
ll

T
im

e
1

2
3

4
Q
u
e
u
e

A
b
a
n
d
o
n
e
d
?

A
n
sw

e
re
d

E
n
d

T
im

e
R
e
sp

o
n
d
e
r

13
55

F
in
is
h

[]
11
75

13
55

#
9
(F

IR
E
)

13
85

F
in
is
h

[]
11
44

13
85

#
8
(F

ir
e)

16
48

F
in
is
h

[]
10
10

16
48

#
4
(L
aw

)

T
ab

le
A
.3
:
H
an

d
-t
ra
ce
d
ex
p
ec
te
d
re
su
lt
s
of

th
e
sm

al
l
91
1
si
m
u
la
ti
on

u
se
d
to

ve
ri
fy

th
e
E
S
C
S
m
o
d
el

im
p
le
m
en
ta
ti
on

.

72

Listing A.1: Small 911 simulation output

<?xml version ="1.0" standalone ="no"?>

<!-- State output file for the 911 systems modeling -->

<SimState >

<Matrix name="xloc" type="complete" rows="1" columns="11" multiplier="1.0"

>

-122.329 -122.355 -122.38 -122.284 -122.335 -122.337 -122.317 -122.362

-122.309 -122.355 0

</Matrix >

<Matrix name="yloc" type="complete" rows="1" columns="11" multiplier="1.0"

>

47.6043 47.6821 47.5608 47.6686 47.7029 47.6161 47.6152 47.536 47.5719

47.6821 0

</Matrix >

<Matrix name="vertexTypesPreEvent" type="complete" rows="1" columns="11"

multiplier="1.0">

4 5 5 5 7 7 7 7 6 6 3

</Matrix >

<Matrix name="vertexTypesPostEvent" type="complete" rows="1" columns="11"

multiplier="1.0">

4 5 5 5 7 7 7 7 6 6 3

</Matrix >

<Matrix name="numTrunks">

5 10 10 10 10 10 5 10 10 10 0

</Matrix >

<Matrix name="numServers">

4 5 3 3 3 3 3 4 5 3 0

</Matrix >

<Matrix name="droppedCalls">

1 0 0 0 0 0 0 0 0 0 0

</Matrix >

<Matrix name="receivedCalls">

21 2 3 1 2 2 1 1 5 2 0

73

</Matrix >

<Matrix name="BeginTimeHistory">

<vertex id="0">

37 73 47 34 42 388 130 435 401 324 490 541 900 960 671 1110 1106

1155 1143 1009

</vertex >

<vertex id="1">

265 512

</vertex >

<vertex id="2">

490 1061 1337

</vertex >

<vertex id="3">

213

</vertex >

<vertex id="4">

434

</vertex >

<vertex id="5">

450 750

</vertex >

<vertex id="6">

1014

</vertex >

<vertex id="7">

892

</vertex >

<vertex id="8">

207 370 982 1175 1385

</vertex >

<vertex id="9">

534 1355

</vertex >

74

</Matrix >

<Matrix name="AnswerTimeHistory">

<vertex id="0">

38 0 48 35 43 389 208 436 402 325 491 542 901 961 672 1111 1107 1175

1144 1010

</vertex >

<vertex id="1">

266 513

</vertex >

<vertex id="2">

491 1062 1338

</vertex >

<vertex id="3">

214

</vertex >

<vertex id="4">

435

</vertex >

<vertex id="5">

451 751

</vertex >

<vertex id="6">

1015

</vertex >

<vertex id="7">

893

</vertex >

<vertex id="8">

208 371 983 1176 1386

</vertex >

<vertex id="9">

535 1356

</vertex >

75

</Matrix >

<Matrix name="EndTimeHistory">

<vertex id="0">

207 0 213 265 370 434 450 490 512 534 750 892 982 1014 1061 1175

1337 1355 1385 1648

</vertex >

<vertex id="1">

496 623

</vertex >

<vertex id="2">

545 1451 1568

</vertex >

<vertex id="3">

379

</vertex >

<vertex id="4">

480

</vertex >

<vertex id="5">

693 1010

</vertex >

<vertex id="6">

1068

</vertex >

<vertex id="7">

1243

</vertex >

<vertex id="8">

377 698 1064 1240 1627

</vertex >

<vertex id="9">

744 1536

</vertex >

76

</Matrix >

<Matrix name="WasAbandonedHistory">

<vertex id="0">

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

</vertex >

<vertex id="1">

0 0

</vertex >

<vertex id="2">

0 0 0

</vertex >

<vertex id="3">

0

</vertex >

<vertex id="4">

0

</vertex >

<vertex id="5">

0 0

</vertex >

<vertex id="6">

0

</vertex >

<vertex id="7">

0

</vertex >

<vertex id="8">

0 0 0 0 0

</vertex >

<vertex id="9">

0 0

</vertex >

</Matrix >

77

...

<Matrix name="Tsim" type="complete" rows="1" columns="1" multiplier="1.0">

900

</Matrix >

<Matrix name="simulationEndTime" type="complete" rows="1" columns="1"

multiplier="1.0">

1800

</Matrix >

</SimState >

	List of Figures
	Glossary
	Introduction
	Contributions
	Overview

	Background: Emergency Services Communication Systems (ESCSes)
	History of 911: Keeping up With Technology
	Next Generation 911
	The 911 Response Process

	Literature Review
	Method: ESCS Domain Architecture
	Structure: ESCS as Graph-Based Systems
	Behavior: Discrete Events Queueing Model
	Interactions: Communicating Finite State Machines
	Graphitti Implementation

	Method: ESCS Mathematical Models
	Call Arrival as Realization of a Spatio-Temporal Cluster Point Process
	Call Abandonment
	Redial
	Service Time
	Responder Dispatch and Response Time
	Dealing with Outliers in Exponential Distributions

	Results
	Models Verification
	Illustrative Application

	Conclusion
	Architectural Framework
	Mathematical Models
	Retrospective
	Future Work

	Verification of small 911 simulation output

