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Computing and Software Systems

Neural spike activity forms the fundamental basis of information processing and communi-

cation in the brain, exhibiting complex spatiotemporal dynamics. Recent advances in com-

putational neuroscience have enabled high-resolution numerical simulations of large-scale

neural networks, generating spike-time and location data that capture emergent phenomena

such as neuronal avalanches and whole-network bursting. In the case of neuronal avalanches,

prior analysis has almost exclusively focused on temporal information, ignoring the spatial

information associated with spike data. This project presents an efficient algorithm that

incorporates both spatial and temporal constraints for avalanche classification, moving be-

yond conventional spike-train analyses. Through systematic comparison of temporal-only

and spatiotemporal methods, we investigate how the inclusion of spatial information affects

avalanche identification and characterization. Finally, we examine how varying spatiotem-

poral constraints influence the detection and properties of whole-network bursting events,

providing insight into the large-scale organization of neural activity.



TABLE OF CONTENTS

Page

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Chapter 1: Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Chapter 2: Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Hardware specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 3: Temporal Avalanche Classification . . . . . . . . . . . . . . . . . . . . 6

3.1 Algorithm and Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Power-law relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 4: Spatiotemporal Avalanche Classification . . . . . . . . . . . . . . . . . 10

4.1 Algorithm and Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . 10

4.2 Spatiotemporal Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 5: Burst Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1 Temporal Proximity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2 Burst Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 6: Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1 Power-Law Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.2 Mid-Sized Avalanche Disappearance . . . . . . . . . . . . . . . . . . . . . . . 23

6.3 Algorithm Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

i



Chapter 7: Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

ii



LIST OF FIGURES

Figure Number Page

2.1 Input data format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Temporal avalanche size probability distribution . . . . . . . . . . . . . . . . 9

4.1 Spatiotemporal avalanche size probability distribution - τ = 1.5, r = 8 . . . . 15

4.2 Spatiotemporal avalanche size probability distribution - τ = 50, r = 8 . . . . 16

5.1 Burst raster plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 Burst temporal proximity to mid-sized avalanches . . . . . . . . . . . . . . . 21

5.3 Burst wavefront propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.4 Burst edge interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

iii



LIST OF TABLES

Table Number Page

2.1 System Hardware Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 5

6.1 Performance Benchmarking of Spatiotemporal Avalanche Detection Algorithm 24

iv



ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Professor Michael Stiber, for

his patience, unwavering support, and immense wealth of knowledge throughout my capstone

project. His guidance and expertise were invaluable in helping me navigate the complexities

of this research.

I am grateful to my committee members, Professor Mia Champion and Professor Bill

Erdly, for their time, thoughtful feedback, and valuable insights that helped strengthen this

work. I would like to acknowledge the Intelligent Networks Laboratory (INL) for providing

access to computational resources and data that were essential to this project. The lab

meetings and discussions provided a stimulating environment for research development.

Finally, I extend my heartfelt thanks to my family for their constant encouragement and

support throughout this journey. Their belief in me has been a great source of strength and

motivation.

v



DEDICATION

To my mother, Shruti Taneja and my father, Rajat Taneja -

Your unwavering support and belief in me have shaped every step of this journey.

This achievement is as much yours as it is mine.

vi



1

Chapter 1

BACKGROUND

Neurons in the brain communicate and propagate electrical signals through intricate

networks and neural pathways. This electrical activity (referred to as “spikes”) forms the

basis of the brain’s communication and computational processes, enabling complex functions

such as sensory processing, motor control and higher cognition. Such spiking activity is far

from random and is known to exhibit rich spatiotemporal dynamics [6]. Neuron activity at

the individual level is a largely binary event i.e. it presents itself in the form of the presence

or absence of a spike. The magnitude of spikes is stereotypical and is therefore assumed

to carry minimal information. Rather, information is considered to be encoded in the rate

or timing of these spikes. The analysis of this spike-time activity offers a deeper look into

neural network dynamics.

Spike-time data has been extracted using a variety of experimental and computational

methods, including multi-electrode arrays (MEAs) from living cortical cultures [20, 8, 16] and

numerical simulations of neuronal networks [23, 1, 19]. With the advancement of technology

and computational power, numerical simulations have grown more sophisticated and offer

access to higher resolution spike-time and location data at larger scales compared to many

experimental approaches.

Among the emergent behaviors observed in these neuronal networks, two prominent fea-

tures stand out: neuronal avalanches and whole-network bursting.

Neuronal avalanches are described as surges of spike activity that occur more frequently

than the system’s average activity. This phenomenon has been observed in both living corti-

cal cultures [4] and numerical simulations [1], and is characterized by a power-law relationship

between avalanche size and probability:
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P (S) ∼ Sβ (1.1)

Here, P(S ) represents the probability distribution of avalanche sizes (S), β represents the

power-law exponent/slope of line and ∼ denotes proportionality. This power-law behavior

is a characteristic trait of systems in a state of self-organized criticality [15, 2, 3]. Such

systems are sensitive to small perturbations that can trigger cascades of events through

the entire system. Self-organized criticality is a common feature of large, complex natural

systems composed of many interacting components such as earthquakes [9] and nuclear chain

reactions [10].

Another feature observed as part of the neural dynamics in cultured cortical networks is

whole-network bursting. A burst is defined as a synchronized spiking event that involves most

or all of the neurons in the network, and are known to play an important role in information

processing [14, 11]. Bursts have been shown to propagate outwards from varying origin

locations in the form of waves of activity [13], and their timing and intensity are known to

change as the culture develops and matures [22, 7].

1.1 Objectives

1. Historically, there has been a focus on analysis and characterization of neuronal avalanches

by only taking into account their temporal distributions (referred to as ”spike-train”

data). In this project, we present an efficient algorithm that imposes a spatiotemporal

constraint, making use of both the spatial and temporal data available in an attempt

to offer potentially more accurate avalanche classification.

2. With the spatiotemporal algorithm implemented, we examine how avalanche classifica-

tion and interpretation differ between the temporal-only and spatiotemporal methods.

3. We also investigate the phenomenon of whole-network bursting to observe how burst

analysis results change with the application of different spatiotemporal constraints.
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Chapter 2

DATA ACQUISITION

2.1 Data

This work utilized a simple computational model of cortical culture development proposed by

Kawasaki and Stiber [12], which incorporates the minimal dynamics necessary to reproduce

network behaviors observed in living cortical systems through neurite outgrowth and synapse

formation.

The model was implemented using Graphitti, a graph-based systems simulator designed

to leverage GPU architecture for computationally intensive, large-scale simulations [17].

The simulated network consisted of 10,000 neurons arranged in a structured 100 × 100

rectangular grid, with neurons classified as inhibitory, excitatory, or endogenously active and

distributed according to the layout described in [12]. The simulation ran for 600 million time

steps at 0.1ms temporal resolution, representing 28 days of in vitro development, while also

recording the location of each spike to provide spatial resolution.

Kawasaki and Stiber [12] also demonstrated that this network architecture produces

stationary bursting behavior under specific parameter combinations, particularly with target

firing rates (ϵ) of 1.0Hz or 1.9Hz and excitatory cell fractions of 90% or 98%. For this study,

we selected the simulation with ϵ = 1.0Hz firing rate and 90% excitatory neurons as the

representative dataset for spatiotemporal analysis.

The spiking data is organized as in Fig. 2.1. The first column in each row indicates

the timestep, with each subsequent column containing the 1-dimensional indices of all neu-

rons that generated spikes during that timestep. Our selected simulation encompassed

570,189,562 spikes. For analytical purposes, this study focused exclusively on the final

quarter of the simulation data, corresponding to the last seven days of in vitro simulated
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100,1,7901,8004
126,7879
132,101,80,7577
190,4950
250,279,7778,7803
286,479,7779,7805
400,4950
470,102,7879
500,7577,381
540,7778,8004

Timestep 1-D Integer
Indices

Figure 2.1: Input data format.

development. This period represents the state when the neural network achieved structural

maturity and was known to exhibit stationary bursting [12]. This period of the simulation

contained 172,323,192 total spikes, and served as the input fed to the avalanche detection

algorithms.

2.2 Hardware specifications

Our analysis was run on in-house servers available to Intelligent Networks Laboratory (INL)

members. The servers, namely ’Otachi’ and ’Raiju’, house the simulation data extracted

from Graphitti. Our code was run on Otachi, with the hardware specifications detailed in

Table 2.1:
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Table 2.1: System Hardware Specifications

Category Component Specification

System
Architecture x86 64

Memory (RAM) 191 GB total

CPU

CPU Model Intel Xeon Gold 5118 @ 2.30GHz

Cores / Threads 24 cores, 48 threads

Clock Speed 1.0 GHz (Base) – 3.2 GHz (Max)

Caches (L1/L2/L3) 32K / 1024K / 16.9MB

Virtualization VT-x

GPU

GPU Model NVIDIA Tesla V100-PCIE

GPU Count 2

GPU Memory 16 GB per GPU (32 GB total)

CUDA Version 11.2

Driver Version 460.32.03
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Chapter 3

TEMPORAL AVALANCHE CLASSIFICATION

The temporal avalanche detection algorithm serves as the baseline approach for neu-

ronal avalanche classification. It follows established protocols from existing literature, where

avalanches are formed based solely on the temporal spacing between consecutive spike

events [13, 4] i.e. spikes are consolidated into avalanches when the inter-spike interval is

less than the mean inter-spike interval across the entire network [19, 23].

3.1 Algorithm and Complexity Analysis

The detection process follows a sequential scanning approach through the chronologically

ordered spike data. The algorithm maintains a running count of avalanches and compares

the temporal distance between consecutive spike events. The inter-spike-interval (ISI) is

defined as the time interval between two adjacent spikes in the spike-train. For a spike

i represented as (ti, ni), where ti represents its time of occurrence and (ni ∈ [1, 10000])

represents its 1-dimensional index as governed by its location in the 100 × 100 rectangular

grid of neurons; ∆ti is the ISI between spikes (i+ 1) and i:

∆ti = ti+1 − ti (3.1)

For spike-train data with N total spikes, the mean ISI can be calculated by dividing the

total duration of the simulation, by the number of inter-spike intervals:

meanISI =
tN − t0
N − 1

(3.2)

For our data, the meanISI was calculated to be 1.5 timesteps.1 A gap larger than

1Although the meanISI is calculated to be 1.5 timesteps (0.15ms), the input data contains integral
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the meanISI between two consecutive spikes represents the end of the previous running

avalanche, and the beginning of a new potential avalanche. All consecutive spikes occurring

within the meanISI window are assigned to the current avalanche regardless of their spatial

distribution across the neural network (see Algorithm 1). After all spikes have been consol-

idated into avalanches, we discard any avalanches of size = 1 as they’re considered to be

isolated single-spike activity i.e. noise.

Algorithm 1 Temporal-only avalanche classification algorithm
Input: Spike data S = {(t1, n1), (t2, n2), . . . , (tm, nm)} sorted chronologically by timestep ti, temporal threshold (meanISI) τ

Output: Set of avalanches A = {A1, A2, . . . , Ak} where each Ai contains spikes belonging to avalanche i

1: avalanche id ← 0

2: prev timestep ← −∞

3: avalanches ← ∅

4: for each timestep t in chronological order do

5: if prev timestep + τ < t then

6: avalanche id ← avalanche id + 1

7: end if

8: for each spike (t, n) occurring at timestep t do

9: avalanches[avalanche id ]← avalanches[avalanche id ] ∪ {(t, n)}

10: end for

11: prev timestep ← t

12: end for

13: for each avalanche Ai ∈ avalanches do ▷ Discard 1-sized avalanches

14: if |Ai| = 1 then

15: avalanches ← avalanches \ {Ai}

16: end if

17: end for

18: return avalanches

The best-case time complexity of the algorithm is Ω(N), where N is the total number

of spikes in the dataset. This occurs when each spike falls outside the temporal threshold

τ of its neighbors, causing every spike to initiate a new avalanche. In this scenario, each

spike is inserted into a singleton set, which is implemented as an ordered data structure

timesteps. Given that, the same avalanche classification results were categorically achieved by setting the
meanISI to 1.0 in the avalanche classification code.
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in C++ (std::set). Each insertion into a small or singleton set has an amortized cost of

O(log 1) = O(1), leading to linear overall processing.

The worst-case time complexity is O(N logN), which occurs when all spikes fall within

the temporal window and form a single massive avalanche. Since each spike is inserted into

the same ordered set, the insertion cost grows as the set increases in size: the ith spike costs

O(log i) to insert. Summing over all N spikes, this leads to a total cost of:

N∑
i=1

log i ≈ O(N logN) (3.3)

This is because the sum (log 1+ log 2+ . . .+ logN) is logN !, which by Stirling’s approx-

imation is N logN [18].

Additionally, the final pass over the avalanche sets to remove singleton events contributes

a negligible O(K) time cost, where K is the number of 1-sized avalanches (bounded above

by N), and does not change the overall complexity classification.

Space complexity remains O(N) in all cases, as each spike is stored exactly once. Thus,

the algorithm is highly efficient for typical neural data with well-separated avalanche events

but gracefully handles extreme cases as well.

3.2 Power-law relationship

Fig. 3.1 shows the avalanche size distribution as classified by the temporal-only algorithm

for the last 1/4th duration of the simulation data (corresponding to the last 7 of 28 days in

vitro). We observe a clear distinction between the avalanches with greater than 104 spikes,

representing whole-network bursts, and the non-burst avalanches with less than 103 spikes.

The figure also shows a line of best fit to observe the power-law relationship for non-burst

avalanches, displaying an exponent of β = −2.52. A coefficient of determination (describing

quality of fit) was also generated, the values for which lie between R2 = [0, 1], with a higher

value indicating a better fit. This value was observed to be 0.937.

After consolidating the spike-train data into avalanches based on their ISIs, the algorithm
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Figure 3.1: Log-log plot of avalanche size-probability with τ = 1.5. We identify avalanches

with > 104 spikes as bursts, and observe a roughly linear size distribution of the non-burst

avalanches (size < 103 spikes) with the slope of line of best fit (β) = -2.52, and coefficient of

determination (quality of fit, R2) = 0.937.

found a total of 6,340,187 temporal avalanches, out of which 2,848 were detected as large-

scale bursts. Avalanche detection fundamentally aims to group together causally related

spikes. Since this algorithm relies solely on temporal properties and completely disregards

spatial information, its bound to group spatially distant neuronal activity—spiking around

the same time—into the same avalanche. Given that neural signal propagation requires finite

time and occurs through sequential synaptic connections, spikes occurring simultaneously at

distant spatial locations cannot be causally related. This temporal-only approach therefore

fails to capture the true nature of avalanche distributions.
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Chapter 4

SPATIOTEMPORAL AVALANCHE CLASSIFICATION

The spatiotemporal avalanche classification algorithm (see Algorithm 2) is presented as

a methodological advancement over the temporal-only approach. Rather than clustering

temporally coincident spikes regardless of location, this method incorporates both spatial

and temporal proximity constraints to ensure that only causally related spikes are grouped

into the same avalanche. By excluding spikes from distant spatial locations that cannot

be causally connected, this approach provides potentially more accurate classification of

neuronal avalanche events.

However, this clustering approach can lead to a situation where a spike finds itself in

spatiotemporal vicinity of two or more distinct avalanche events. For example, we could find

a case where two avalanches started in distinct spatial locations, but propagated towards

each other, creating an ambiguous situation pertaining to spike ownership.

Lee et al.’s approach addresses this by applying spatiotemporal constraints as a post-

processing step to the temporal avalanches identified earlier, effectively removing spatially

distant outliers while preserving the original avalanche boundaries [13].

In contrast, our approach addresses the problem of ambiguous spike-ownership by merging

all avalanches that exhibit spatiotemporal proximity. Rather than maintaining temporal

avalanches and discarding spatial outliers, we treat converging avalanches as single unified

events.

4.1 Algorithm and Complexity Analysis

For each spike i represented as (ti, ni), where ti represents its time of occurrence and (ni ∈

[1, 10000]) represents its 1-dimensional index in the 100 × 100 rectangular grid of neurons,
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we first extract the corresponding neuron’s (x, y) coordinates:

x =

⌊
(ni − 1)

100

⌋
+ 1 (4.1)

y = ni − (100 ∗ x) + 100 (4.2)

For two spikes i and j, given their 2-D coordinates (xi, yi) and (xj, yj), we determine their

spatial proximity by calculating the Euclidean distance between the neurons associated with

the two spikes:

distance =
√
(xi − xj)2 + (yi − yj)2 (4.3)

Given the distances between spiking neurons, the following operations are carried out

while parsing each spike in chronological order and allocating it to an avalanche:

1. Sliding Window Maintenance

• The double-ended queue (recentSpikes) holds previous spikes that are in temporal

vicinity to the current spike. Spikes that are no longer in temporal proximity are

removed from the front of the deque.

• The time cost of this operation is amortized O(1) per spike, since each spike is

added and removed once from the deque and there are a finite number of total

spikes, N .

2. Neighbor Scan

• We find spatiotemporal neighbors by calculating the distance between the current

spike i and each of the di spikes in the deque (0 ≤ di ≤ N). The time cost of this

operation is O(di), since the distance is calculated in constant time.

3. Avalanche Insertion and Merging
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Algorithm 2 Spatiotemporal Avalanche Detection
Input: Spike dataset S = {(t1, n1), (t2, n2), . . . , (tm, nm)} ordered chronologically, temporal threshold τ , spatial radius r

Output: Set of avalanches A = {A1, A2, . . . , Ak} where each spike in each Ai contains at least one spatiotemporal neighbor

in Ai

1: avalanche id ← 0

2: recent spikes ← ∅ ▷ Sliding temporal window (deque)

3: spike to avalanche ← ∅ ▷ Spike-avalanche mapping

4: avalanches ← ∅

5: for each spike (t, n) in chronological order do

6: Remove spikes from recent spikes where timestep < t− τ

7: neighbors ← {s ∈ recent spikes : distance(s.n, n) < r}

8: if neighbors = ∅ then

9: Add (t, n) to recent spikes and continue

10: end if

11: overlapping avalanches ← {spike to avalanche[s] : s ∈ neighbors, s ∈ spike to avalanche}

12: if overlapping avalanches = ∅ then

13: Create new avalanche with avalanche id

14: Add (t, n) and all neighbors to avalanches[avalanche id ]

15: for each spike s ∈ neighbors do

16: spike to avalanche[s]← avalanche id

17: end for

18: spike to avalanche[(t, n)]← avalanche id

19: avalanche id ← avalanche id + 1

20: else

21: main id ← first element of overlapping avalanches

22: for each id ∈ overlapping avalanches \ {main id} do

23: avalanches[main id ]← avalanches[main id ] ∪ avalanches[id ]

24: for each spike s in avalanches[id ] do

25: spike to avalanche[s]← main id

26: end for

27: Remove avalanches[id ]

28: end for

29: Add (t, n) and neighbors to avalanches[main id ]

30: end if

31: Add (t, n) to recent spikes

32: end for

33: return avalanches
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• If none of the spatiotemporal neighbors are part of any avalanches, we create a

new avalanche and insert the current spike and its neighbors into it.

• If the spatiotemporal neighbors belong to one unique avalanche, we insert the

current spike and all its neighbors to that avalanche.

• If the spatiotemporal neighbors belong to more than one avalanche:

– We pick one avalanche as the destination.

– All m spikes from the overlapping avalanches are merged into the destination

avalanche, where 0 ≤ m ≤ N .

– The current spike and all its neighbors are inserted into the destination

avalanche.

• Since each avalanche is a collection of spikes housed in a C++ std::set, each

insertion costs O(log s), where s (0 ≤ s ≤ N) is the size of the set at the time

of insertion. The process of merging avalanches involves inserting m spikes from

overlapping avalanches into one common avalanche, and the time cost for this

merge is given by O(m log s).

Therefore, the total time cost associated with parsing a spike is given as:

Ti = O(di +m log s) (4.4)

In the best case, no spike is within spatiotemporal proximity of any other spike. Therefore,

for each spike i: di = 0 since there are no neighbors to be found. Since there are no neighbors,

no avalanches are ever formed i.e. m = s = 0. Thus, Ti = O(1) per spike. Over N total

spikes, the best-case time complexity is:

N∑
i=1

Ti = Ω(N) (4.5)

In the worst case, processing each spike i triggers repeated merging of multiple avalanches.

Since spikes are processed chronologically, and each spike only looks backwards in time to
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find spatiotemporal neighbors, spike i could have a maximum of i− 1 neighbors.

The cost of scanning for neighbors in the worst-case is:

N∑
i=1

di =
N∑
i=1

(i− 1) =
N(N − 1)

2
= O(N2) (4.6)

If each spike causes all previous spikes to merge into a new avalanche (in the worst-case),

the total merge cost is:

N∑
i=1

(i− 1) log(i− 1) ≈ O(N2 logN) (4.7)

Thus the total worst-case time complexity is O(N2 +N2 logN) ≈ O(N2 logN).

The space complexity remains O(N) in all cases. Each spike is stored once and assigned

to exactly one avalanche set. Thus, all auxiliary data structures grow linearly with N and

do not impact asymptotic space bounds.

4.2 Spatiotemporal Parameters

4.2.1 Tau (τ) = 1.5, Radius (r) = 8

The spatial constraint is derived from the Graphitti simulation’s connection radius of 2 units,

with the constraint set to four times this value to capture neurons where their spike-activity

directly influences other neurons in the vicinity i.e. r = 8. With the addition of a spatial

constraint, the number of total avalanches decreases to 473,509. The dramatic decrease in

avalanche count provides evidence that many temporal-only avalanches contained spatially

dispersed spikes that were incorrectly grouped together. We still observe the same number of

bursts i.e. 2,848. Fig. 4.1 shows that the avalanche size distribution maintained a power-law

relationship with an exponent of -2.33, with an R2 score of 0.953. The improved quality of

fit compared to the temporal-only approach provides evidence that spatiotemporal means of

clustering avalanches offer results that are closely consistent with a power-law relationship,

as predicted by general avalanche theory.
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Figure 4.1: Spatiotemporal avalanche size probability distribution with τ = 1.5, r = 8.

The spatiotemporal algorithm identifies burst and non-burst avalanches, with the non-burst

avalanches displaying a power-law exponent = -2.33 and quality of fit R2 = 0.953.
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Figure 4.2: Spatiotemporal avalanche size probability distribution with τ = 50, r = 8 and

slope = -7.29. With adjusted spatiotemporal constraints, we observe the complete disap-

pearance of avalanches sized 16–1000, and also observe a ≈ 10x increase in total avalanches

found compared to the τ1.5 spatiotemporal analysis.

4.2.2 Tau (τ) = 50, Radius (r) = 8

Instead of using the meanISI calculated from the entire simulation to define temporal thresh-

olds (as done above), a more principled approach would build avalanches using spikes within

a spatiotemporal neighborhood. Specifically, the temporal window should reflect the mean

ISI for neurons that fall within the spatial window itself. For example, consider a circular

spatial window with radius 8: this encompasses approximately πr2 ≈ 200 neurons. Given

that individual neurons spike at an average rate of 1 Hz in our simulation, this group of

200 neurons collectively produces 200 spikes/s. The expected inter-spike interval within this

local population is therefore 1/200s → 5ms (or 50 timesteps).
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With these constraints, the algorithm identified 4,521,875 avalanche events while main-

taining the same 2,848 burst occurrences. The avalanche distribution is shown in Fig. 4.2,

where we observe the complete disappearance of avalanches with size 16 ≤ avalSize ≤ 1000

(henceforth referred to as mid-sized avalanches), and observe a much deeper slope of -7.29,

indicating a dramatic shift in the avalanche distribution profile.

This result was unexpected, because moving from a smaller temporal constraint to a

larger temporal constraint while keeping the spatial constraint constant, should group more

spikes together into each avalanche. We’re essentially casting a bigger net over the data and

since we have a finite number of spikes, we should expect more spikes per avalanche and less

total avalanches due to increased merging, but our results show the opposite. We provide

an explanation for these results below:

The substantial increase in total avalanches (from 473,509 to 4,521,875) can be explained

by the broader temporal grouping enabled by the larger τ50 window. With the restrictive τ1.5

window, many spikes—having temporal intervals slightly larger than 1.5 timesteps—remain

isolated and don’t meet the avalanche detection criteria. The τ50 window captures these

temporally dispersed spikes and groups them into avalanches. This expanded temporal net

transforms previously isolated single spikes and small spike clusters into detectable avalanche

events, dramatically increasing the total count.

However, to explain the disappearance of all the mid-sized avalanches, we need to take a

closer look at the burst phenomenon.
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Chapter 5

BURST ANALYSIS

Bursts are different from avalanches in a couple key ways:

• Bursts contain greater than 104 spikes, compared to standard avalanches that cap out

at ≈ 103 spikes.

• Bursts manifest in the form of spatially contiguous waves that propagate outwards

from varying origin points as the simulation matures [13].

Even though both spatiotemporal analyses identified the same number of bursts (2,848),

there are subtle differences in their size and duration.1 The application of a larger temporal

window, τ50, resulted in an increase in both burst size and duration compared to the more

restrictive window, τ1.5. The average burst size increased from 48,488 to 49,335 spikes, while

the average burst duration grew from 1,109 to 1,346 timesteps.

Alongside this increase, mid-sized avalanches (16 ≤ avalSize ≤ 1000), which were de-

tectable under the τ = 1.5, r = 8 constraints (Fig. 4.1), disappear when the temporal window

is expanded to 50 timesteps (Fig. 4.2). This simultaneous increase in burst size/duration and

the disappearance of mid-sized avalanches raises a key question: are the mid-sized avalanches

genuine independent events, or are they components of whole-network bursts?

To investigate this further, we employed two complementary approaches: (1) temporal

proximity analysis and (2) burst visualization.

1The duration of a burst is defined as the total time for which it recorded heightened spike activity i.e.
endTime − startTime, while the size of a burst is defined as the number of spikes fired in that duration.
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(a) Burst identified using the stricter window τ = 1.5, r = 8. Dotted blue lines indicate the ±50

timestep window around the burst boundaries.
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(b) Same burst identified using the more lenient window τ = 50, r = 8. The burst boundaries

expand, incorporating surrounding spikes.

Figure 5.1: Raster plots of an isolated burst. Each dot corresponds to a spike, with its

horizontal position indicating spike time and vertical position indicating the spiking neuron’s

ID. Black dots represent burst spikes, while red dots denote all non-burst spikes, including

noise. Dashed black lines mark the identified burst start and end times.
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5.1 Temporal Proximity

Fig. 5.1a shows a raster plot of system activity during an isolated burst identified using the

τ = 1.5, r = 8 constraint. Black dots represent spikes classified as part of the burst, while

red dots denote all non-burst spikes that may or may not be a part of other avalanches.

Noticeably, several spikes occur within 50 timesteps before burst onset and after burst ter-

mination. These are not included in the burst under the tighter constraint, but we see that

they become part of the burst when a more lenient temporal threshold is used, as shown in

Fig. 5.1b.2

However, it remains unclear whether the newly added spikes are part of mid sized

avalanches. To investigate this, we analyzed all mid-sized avalanches and computed their

temporal distance from the nearest burst, as shown in Fig. 5.2. We found that virtually all

mid-sized avalanches occur within 50 timesteps before burst initiation or after burst termi-

nation.

Notably, although a few mid-sized avalanches initially fall outside the 50-timestep win-

dow, they are eventually incorporated into bursts through transitive inclusion: as bursts

absorb nearby avalanches, their temporal boundaries expand, bringing additional avalanches

within range for merging.

5.2 Burst Visualization

In addition, high-resolution visualization of individual spike activity provided definitive ev-

idence for the burst integration hypothesis. Fig. 5.3 shows that bursts propagate as coor-

dinated wavefronts across the neural network. The interaction of the wavefront with the

boundaries of the 100×100 simulation grid leads to localized clusters of activity, as shown in

Fig. 5.4. Under restrictive temporal constraints, parts of the wavefront get detached and are

2Since the 10,000 neurons are arranged in a 100× 100 grid, it’s important to note that spatial contiguity
in Figures 5.1a and 5.1b is not representative of actual spatial relationships in the simulation grid. For
example, neuron IDs 100 and 101 appear adjacent in the plots mentioned above, but are located on the
rightmost and leftmost edges of the simulation grid, respectively.
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Figure 5.2: Temporal proximity of mid-sized avalanches to the start/end times of bursts.

misclassified as independent mid-sized avalanches; however, the expanded temporal window

correctly identifies them as components of the originating burst.

These findings demonstrate that all mid-sized avalanches are artifacts of temporal win-

dowing rather than independent network events.
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Figure 5.3: Evolution of a single burst event from start to end, ordered left to right in a

100× 100 pixel-grid. Adjacent images differ by 130 timesteps (13ms). Each pixel represents

a neuron in the 100× 100 pixel-grid, color-coded according to activity—black dots represent

spikes that were classified as being part of a burst, while red dots (visible in the last frame)

represent spikes that were classified as part of a mid-sized avalanche.

Figure 5.4: Trailing burst activity as the wavefront propagates to the edges of the simulation

grid. Red dots indicate spikes belonging to mid-sized avalanches, while black dots denote

burst-associated spikes.
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Chapter 6

DISCUSSION

Most avalanche analyses in the literature focus on systems responding to external stim-

uli, where all resulting activity can be clearly attributed to avalanche events. In contrast,

our neuronal simulations operate autonomously, driven by a combination of excitatory and

endogenously firing neurons, creating a more complex analytical challenge. Without exter-

nal stimuli to delineate avalanches, we must infer avalanche events from ongoing network

activity while distinguishing them from stochastic background noise. Because direct causal

relationships between spikes are difficult to establish in this setting, we apply spatiotemporal

constraints to support avalanche inference.

6.1 Power-Law Relationships

The addition of spatial constraints (τ = 1.5, r = 8) reduced detected avalanches from

6,340,187 to 473,509 while improving the power-law fit (R2 from 0.937 to 0.953). With

a more informed spatiotemporal constraint of (τ = 50, r = 8), the power-law relationship

manifests with an exponent of β = −7.29, where all mid-sized avalanches disappear. Al-

though this yields a higher quality of fit (R2 = 0.955), slope and fit metrics can no longer

be trusted as indicators of confidence, since all meaningful mid-sized avalanches were later

revealed to be part of burst activity.

6.2 Mid-Sized Avalanche Disappearance

The systematic increase in measured burst size and duration with expanded temporal win-

dows prompted further investigation into whether mid-sized avalanches were being absorbed

into bursts. Temporal proximity analysis revealed that the mid-sized avalanches, as identified
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Table 6.1: Performance Benchmarking of Spatiotemporal Avalanche Detection Algorithm

Dataset Size (# of Spikes) Execution Time

1.1 ×103 0.006 seconds

5.7 ×104 2.46 seconds

4.8 ×105 19.4 seconds

5.2 ×106 209 seconds (3.5 min)

1.7 ×108 (complete dataset) 7,423 seconds (2.1 hours)

by the τ = 1.5, r = 8 spatiotemporal constraint, consistently appeared within 50 timesteps of

burst initiation or termination. This observation provided strong evidence that these events

represent burst-related activity rather than independent avalanches.

High-resolution visualizations supported this interpretation, showing burst propagation

as wavefronts that become fragmented at the edges of the simulation grid. Under restrictive

temporal constraints, this fragmented activity was being misclassified as separate avalanches.

6.3 Algorithm Performance

A key focus of this research was the development of an efficient spatiotemporal clustering

algorithm. Previous implementations of the algorithm by INL lab members required tens of

hours to days for processing the complete dataset. Our performance benchmarks given in

Table 6.1 demonstrate significant improvements in this regard:
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Chapter 7

FUTURE WORK

A critical unresolved question concerns whether observed avalanche phenomena repre-

sent genuine emergent network behavior or artifacts of endogenously active neurons. 10% of

the neurons in our simulation were set up to fire endogenously. Given that, future analysis

can apply the spatiotemporal classification algorithm while excluding all spike events gener-

ated by these endogenous neurons. This approach would isolate avalanche activity arising

purely from network connectivity and synaptic propagation, distinguishing it from activity

driven by stochastic neuron activation. Comparing avalanche distributions with and without

endogenous contributions would establish whether the observed power-law relationships re-

flect genuine self-organized criticality or represent statistical artifacts of autonomous neural

activity.

The specific mechanisms that trigger burst initiation remain unexplored. Future research

can focus on the systemic analysis of avalanche patterns in the time before burst onset to

reveal characteristic signatures that predict burst formation. Understanding these pre-burst

dynamics would provide insights into the network conditions necessary for large-scale burst

activity.
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