
©Copyright 2025

Avikant Wadhwa

Abstractions for Code Migration from CPU to GPU in Simulation
Domain

Avikant Wadhwa

A thesis
submitted in partial fulfillment of the

requirements for the degree of

Master of Science

University of Washington

2025

Reading Committee:

Dr. Michael Stiber, Chair

Dr. Munehiro Fukuda

Dr. Annuska Zolyomi

Program Authorized to Offer Degree:
Computing and Software Systems

University of Washington

Abstract

Abstractions for Code Migration from CPU to GPU in Simulation Domain

Avikant Wadhwa

Chair of the Supervisory Committee:
Dr. Michael Stiber

Computing and Software Systems

Simulations are crucial in science, enabling the modeling of complex phenomena that

are difficult to study experimentally. As they scale, they demand greater performance and

efficiency. To meet this need, computing has shifted toward heterogeneous architectures

that combine CPUs and GPUs. While effective, this shift introduces software engineering

challenges, making abstraction an increasingly important tool for improving programmabil-

ity. Abstractions hide low-level implementation details behind clean interfaces, improving

clarity and reducing complexity.

This thesis reviews existing abstractions for heterogeneous architectures, analyzing their

integration effort, performance trade-offs, and limitations. It uses the insights from that

review to present the design and implementation of DeviceVector, a lightweight abstrac-

tion that unifies host and device memory management in Graphitti, a high-performance

graph-based simulation platform. DeviceVector enhances programmability by reducing

code duplication, introducing a clear CPU–GPU data relationship, and abstracting CUDA

boilerplate through an interface that closely mirrors a standard C++ container. It also

discusses design approaches for extending support in the future to object hierarchies and

general function-level abstractions, further minimizing logic duplication between host and

device code. Overall, this work highlights how thoughtful abstraction design can bridge the

usability-performance gap in heterogeneous computing systems.

TABLE OF CONTENTS

Page

List of Figures . iii

List of Tables . iv

List of Code Sections . v

Glossary . vi

Chapter 1: Introduction . 1

1.1 Research Motivation . 2

1.2 Overview . 3

Chapter 2: Background: Heterogeneous Development of Graphitti 5

2.1 Host and Device Separation for Entity: Vertices 7

Chapter 3: Existing Abstractions for Heterogeneous Computing 12

Chapter 4: Methodology . 15

4.1 Abstraction Categorization . 15

4.2 Device Vector . 21

Chapter 5: Results . 30

5.1 Quantative Evaluation . 30

5.2 Qualitative Evaluation . 35

Chapter 6: Conclusion . 44

6.1 Summary . 44

6.2 Future Work . 45

Appendix A: Other Design Insights . 51

i

A.1 GPU-Safe Views for Integration of DeviceVector with RecordableVector and
EventBuffer (Object Types) . 51

A.2 Function Abstractions for Graphitti . 52

ii

LIST OF FIGURES

Figure Number Page

2.1 Graphitti Architecture . 7

A.1 Design of DeviceVector with Object Types . 51

A.2 Usage of host and device qualifier . 53

A.3 Unified host and device logic . 53

iii

LIST OF TABLES

Table Number Page

5.5 Ease of Integration Levels . 36

5.6 Ease of Integration Comparison . 37

5.7 Usability Levels . 38

5.8 Usability Comparison . 39

5.9 Portability Levels . 40

5.10 Portability Comparison . 40

5.11 Control Levels . 41

5.12 Control Comparison . 42

iv

LIST OF CODE SECTIONS

Page

2.1 AllSpikingNeurons class in AllSpikingNeurons.h file 9

2.2 Struct for GPU data in AllSpikingNeurons.h file 9

2.3 Methods in AllSpikingNeurons.cpp file . 10

2.4 kernels and device methods in AllSpikingNeurons d.cpp file 11

4.1 Example of Memory Management Abstraction 16

4.2 Example of Execution and Kernel Launch Abstraction 16

4.3 Example of Data and Container Abstraction 17

4.4 Example of Execution Policy Abstraction . 18

4.5 Example of SingleSource Programming Model 18

4.6 Example of Compiler-Based and Directive-Based Abstraction 19

4.7 Example of Cross-Platform and Backend-Agnostic Abstraction 19

4.8 Example of Template and Metaprogramming Abstraction 20

4.9 Replacement of vector by DeviceVector . 27

4.10 Removal of DeviceProperties . 27

4.11 Replacment of CUDA operations with method calls 28

4.12 Modifying CUDA Kernels . 28

A.1 Example showing current Methods in Graphitti 54

A.2 Example showing unified logic . 54

v

GLOSSARY

SIMULATION: Simulation involves creating and analyzing virtual models of real-

world systems to understand their behavior and optimize outcomes. It allows for

experimentation and analysis without the constraints and risks associated with phys-

ical experiments.

Host/CPU: Refers to the central processing unit (CPU) of a computer system, which

is used as a compute device and also coordinates with external devices, including

GPUs. In GPU programming, the host is responsible for initiating data transfers and

kernel launches on the GPU.

Device/GPU: Refers to the Graphics Processing Unit (GPU), which is used as a

compute device for accelerating parallel workloads. In GPU programming, the device

executes kernels and operates on data in its own memory space.

CUDA: Compute Unified Device Architecture (CUDA) is NVIDIA’s parallel comput-

ing platform and programming model that allows developers to use NVIDIA GPUs

for general-purpose computing. It accelerates processing tasks by enabling high-

performance parallel computation.

vi

ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to my chair, Dr. Michael Stiber,

for his unwavering support, patience, and insightful guidance throughout this research. His

enthusiasm and deep knowledge were instrumental in shaping both the direction of this re-

search and my growth as a researcher. It has been a privilege to work under his mentorship.

I would also like to thank my committee members, Dr. Munehiro Fukuda and Dr. Annuska

Zolyomi, for their valuable time, thoughtful feedback, and encouraging support during the

course of this work.

I am grateful to my fellow members of the Intelligent Networks Laboratory for their

contributions to the development and maintenance of Graphitti, which played a foundational

role in this research. Lastly, I would like to acknowledge my parents, family, friends, and

faculty, who have supported me in various ways throughout this academic journey.

vii

1

Chapter 1

INTRODUCTION

Simulations play a central role in scientific research, engineering, and industrial applica-

tions. By enabling the analysis, modeling, and forecasting of complex physical and compu-

tational systems, simulations facilitate the investigation of phenomena that are otherwise

impractical or infeasible to study empirically. Applications span a wide range of domains, in-

cluding neural simulation [1], climate modeling, high-fidelity physics-based computation [2],

and large-scale graph analytics [3]. These simulation workloads are often computationally

intensive, requiring the resolution of high-dimensional numerical systems or the orches-

tration of interactions among a large number of agents or components. Consequently, as

simulations grow in scale and fidelity, they impose stringent demands on computational

throughput, increasing performance and efficiency to remain practical and responsive.

To address these growing performance requirements, modern computing has transi-

tioned toward heterogeneous architectures, which integrate general-purpose CPUs with

high-throughput GPUs within a unified system [4][5]. This shift to a heterogeneous ar-

chitectural paradigm leverages the strengths of both processor types: CPUs offer efficient

control flow and complex branching due to their rich instruction sets and hierarchical caches,

while GPUs are optimized for high-throughput handling massive parallel workloads due to

their many-core architecture execution model. By distributing computational tasks appro-

priately between CPU and GPU, simulation frameworks can achieve significant speedups

and scale to previously infeasible problem sizes. One of the most influential tools enabling

this transition is CUDA (Compute Unified Device Architecture), introduced by NVIDIA in

2006 [6]. CUDA is a parallel computing platform and programming model that provides

an interface that allows developers to write general-purpose code for GPUs in a familiar

C/C++ syntax, significantly lowering the barrier to entry for scientific and high-performance

computing applications. CUDA’s impact on scientific domains such as molecular dynamics

2

(e.g., AMBER, LAMMPS), neural modeling (e.g., NEST, Arbor) and real-time physical

simulations is well documented [7].

However, GPU programming is inherently different from traditional CPU programming

and introduces a unique set of challenges. Unlike CPU code, which operates under a single-

threaded or multithreaded model, GPU code follows a parallel execution model, separate

memory management, and implementation approach that diverges significantly from tra-

ditional software design. Tasks that are straightforward in CPU programming, such as

using recursive data structures, iterative processing, dynamic memory allocation, or main-

taining complex object hierarchies, often need to be carefully refactored or redesigned for

performance and correctness when implemented for GPU execution [8]. GPU kernels op-

erate across thousands of threads, which must be carefully synchronized and optimized to

prevent bottlenecks due to memory access patterns, thread divergence, or bank conflicts.

Additionally, explicit memory management between the host and the device introduces ad-

ditional complexity, as data must be explicitly transferred, incurring performance costs if

not optimized [9]. As a result, migrating code from CPU to GPU or maintaining a hybrid

CPU-GPU codebase often becomes complex and error-prone, reducing overall programma-

bility.

This growing complexity in GPU programming has prompted increased interest in ab-

straction mechanisms as one of the ways to improve programmability—enabling developers

to manage performance while maintaining code readability, modularity, and correctness.

Abstractions help by hiding low-level implementation details behind intuitive interfaces, al-

lowing domain experts to focus on algorithm design rather than hardware intricacies [10].

In the context of CUDA development, abstractions can encapsulate device memory allo-

cation, streamline kernel invocation patterns, and provide tools for safe synchronization.

It can reduce boilerplate code, enforce compile-time constraints, and ensure performance

portability across different hardware configurations [11].

1.1 Research Motivation

To address the complexity of developing heterogeneous applications, a variety of libraries and

frameworks have emerged that offer high-level abstractions for GPU programming. These

3

tools typically provide portable data structures and interfaces that encapsulate hardware-

specific details and manage low-level API calls internally. By abstracting memory manage-

ment, algorithmic patterns, and parallel execution models, they aim to make GPU develop-

ment more accessible and less error-prone. Some advanced solutions even enable seamless

integration across host and device environments, supporting code reuse and improving de-

veloper productivity.

While high-level abstractions simplify GPU development, they often introduce chal-

lenges in integration, maintenance, and performance. These tools evolve independently of

application code, leading to compatibility issues, increased testing complexity, and limited

extensibility. Their general-purpose nature can incur performance overhead compared to

hand-optimized solutions, making them less suitable for high-performance or domain-specific

needs. Moreover, there is a lack of design guidance for these tools, with limited discussion

on categorizing them by the problems they address—such as memory management or kernel

launch—and the trade-offs involved. This gap makes it difficult for developers to design or

implement suitable abstractions.

The goal of this thesis is to design abstractions specifically targeted to Graphitti, a

high-performance graph-based heterogeneous simulation platform. To achieve this, the the-

sis reviews existing abstractions and categorizes them to analyze how different types of ab-

stractions address various aspects of heterogeneous application development. It uses insights

from that review to present the design and implementation of DeviceVector, a lightweight

abstraction that unifies host and device memory management in Graphitti. This work lays

out the design approach and choices behind DeviceVector, which is designed to improve the

programmability of Graphitti so that it can be easily extended by researchers to implement

additional simulation domains. Rather than offering yet another general-purpose library,

the intention is to provide a starting point or offer insights and guidance for designing

targeted, maintainable abstractions.

1.2 Overview

Chapter 2 describes Graphitti’s architecture, design, and motivation from the perspective

of heterogeneous application development. Chapter 3 presents a literature review of exist-

4

ing abstractions for heterogeneous development, highlighting their core features. It briefly

outlines their integration ease, performance, compatibility, offer to developers—alongside

their limitations.

Chapter 4 categorizes different abstraction mechanisms aimed at simplifying and op-

timizing the development of heterogeneous applications. It then describes the methodol-

ogy behind the design and implementation of the DeviceVector class—an abstraction that

streamlines memory management and GPU data access in the Graphitti. The chapter also

outlines key design decisions and integration steps.

Chapter 5 presents an evaluation of the DeviceVector integration into Graphitti, demon-

strating how it reduces development complexity and addresses existing programming chal-

lenges. Lastly, Chapter 6 summarizes the key findings of this study and outlines potential

directions for future work.

5

Chapter 2

BACKGROUND: HETEROGENEOUS DEVELOPMENT OF
GRAPHITTI

Graphitti is a high-performance graph-based simulation platform that aims to aid scien-

tists and researchers by providing pre-built code that can easily be modified to fit different

simulation models. It is derived from the architectural principles of BrainGrid, a neural

network simulator designed to model large-scale neuronal dynamics. Neural network sim-

ulators provide a complementary computational approach for investigating neuronal pop-

ulation dynamics. They enable large-scale modeling and analysis using hybrid CPU–GPU

infrastructures.

The BrainGrid simulator was capable of modeling neural networks with varying sizes,

numbers of synapses, and simulation durations etc., depending on the experimental setup.

In one example configuration, it modeled a network of 10,000 neurons arranged in a 100×100

grid, with up to 500,000 synapses forming dynamically over the course of the simulation.

Executed across 600 million time steps—each representing a 0.1 millisecond interval—this

fine-grained temporal resolution enabled BrainGrid to capture emergent behaviors and self-

organizing dynamics characteristic of biologically inspired systems. Graphitti generalizes

the BrainGrid architecture to support a broader class of graph-based simulations beyond

biologically motivated networks. It introduces an additional abstraction layer that facili-

tates the modeling of diverse real-world systems as complex, self-organizing graphs. In this

framework, vertices represent entities with state, while edges facilitate communication and

influence among them and can also possess internal state [12]. The system supports both

directed and weighted graphs and enables mixed continuous/discrete simulation, in which

vertex and edge states and outputs can be determined by both discrete message passing

and the integration of differential equations as well.

Implemented in C++ and CUDA C++, Graphitti features a modular design compris-

6

ing both CPU and GPU execution pathways. A notable aspect of its implementation is

that the CPU-only version does not require the NVIDIA CUDA compiler (nvcc); it can

be compiled using the standard g++ compiler found on most host systems. This enables

users to develop and test serial simulations using standard C++, and then seamlessly mi-

grate to parallel GPU execution with minimal modifications [12]. The framework provides

clearly defined CUDA integration steps, making it accessible to researchers seeking high-

performance simulations of large-scale, graph-based systems.

All subsystems in Graphitti follow a graph-based modeling abstraction, enabling flexible

initialization of objects and their associated behaviors. While the next section focuses on

the architecture of the Neural Vertices class for managing both CPU and GPU operations,

this structural pattern is consistently applied across other subsystems as well.

7

Figure 2.1: Graphitti UML diagram showing the six main subsystems: Core, Layouts, Con-

nections, Vertices, Edges, and Recorders and their respective subsystems, reused from [13]

2.1 Host and Device Separation for Entity: Vertices

The vertices subsystem encapsulates the data structures, interface classes, and subclasses

related to vertex management. All vertex-related objects are initialized prior to the start

of the simulation. Based on the simulation type specified in the configuration file—such

as Growth, STDP, or NG911—Graphitti uses polymorphism to initialize the appropriate

vertex classes [14]. As illustrated in Figure 2.1, the AllSpikingNeurons class serves as

the base class for all neural implementations. While this section focuses on the neural do-

8

main—specifically the structure of AllSpikingNeurons—a similar design approach is applied

across the implementation of other classes within Graphitti that involve GPU code.

2.1.1 AllSpikingNeurons.h file

On the host side, the AllSpikingNeurons class uses standard C++ containers such as

std::vector<bool> hasFired (which manages per-neuron state). These data members

exist in both host and device builds, as data is initialized on the host, copied to the GPU for

simulation, and later transferred back to the host for persistence (e.g., writing to files). Some

functions—such as setupVertices() (which initializes the vertices with initial data)—are

declared without any conditional compilation since they are build-independent. In contrast,

build-specific functions are conditionally compiled using the USE GPU macro. For example,

advanceVertices() (which updates the state of all vertices for one simulation time step)

is excluded from device-side compilation, while clearDeviceSpikeCounts() (which clears

the spike counts for all neurons) is excluded from host-side compilation.

9

Listing 2.1: AllSpikingNeurons class in AllSpikingNeurons.h file

class AllSpikingNeurons : public AllVertices {

public:

void setupVertices();

...

#if defined(USE_GPU)

public:

clearDeviceSpikeCounts(...);

...

#else

public:

advanceVertices(...);

...

#endif

private:

vector<bool> hasFired_;

...

}

For the device side, the same file defines an AllSpikingNeuronsDeviceProperties struct,

which mirrors the data layout of the host but uses raw device pointers such as bool*

hasFired to manage memory on the GPU. This structure is conditionally compiled using

the USE GPU macro and is excluded when compiling for the host, thereby ensuring a clear

separation between host and device data.

Listing 2.2: Struct for GPU data in AllSpikingNeurons.h file

#if defined(USE_GPU)

struct AllSpikingNeuronsDeviceProperties : public AllVerticesDeviceProperties {

bool *hasFired_;

...

};

#endif

10

2.1.2 AllSpikingNeurons.cpp file

This file contains all the member function definitions of the AllSpikingNeurons class and

uses the USE GPU preprocessor directive to exclude host-only implementations during GPU

builds. This separation ensures that host-specific functionality remains isolated and does

not interfere with device-side compilation.

Listing 2.3: Methods in AllSpikingNeurons.cpp file

void AllSpikingNeurons::setupVertices() {

....

}

#if !defined(USE_GPU)

void AllSpikingNeurons::advanceVertices(....) {

...

}

#endif

2.1.3 AllSpikingNeurons d.cpp file

This file contains all the device-side logic, including CUDA kernels and device-only

functions. It is responsible for defining all GPU-specific operations, such as the

calcSummationPointDevice kernel (which adds psr of all incoming synapses to summation

points) and other device-level functionality associated with this class. The file is compiled

using nvcc and is excluded from host-only builds via CMake to prevent incompatibility

issues. This separation ensures that the CPU implementation remains lightweight and free

of CUDA dependencies when targeting non-GPU platforms. By isolating CUDA code in

device-specific files and using conditional compilation, the architecture remains modular

and portable, thereby simplifying both development and testing.

11

Listing 2.4: kernels and device methods in AllSpikingNeurons d.cpp file

//declaration

__global__ void calcSummationPointDevice(int totalVertices,..);

...

//definition

__global__ void calcSummationPointDevice (...) {

...

}

void AllSpikingNeurons::integrateVertexInputs (..) {

//actual call from the host

calcSummationPointDevice<<<blocksPerGrid, threadsPerBlock>>>(...);

}

12

Chapter 3

EXISTING ABSTRACTIONS FOR HETEROGENEOUS COMPUTING

The increasing prevalence of heterogeneous computing systems, combining general-

purpose CPUs with specialized accelerators such as GPUs, has significantly impacted soft-

ware development practices. Programming models like CUDA and OpenCL enable explicit

GPU utilization but often impose considerable complexity due to manual memory manage-

ment, kernel invocation details, and device synchronization requirements [6]. Consequently,

various abstraction frameworks have emerged to simplify heterogeneous programming and

enhance productivity while preserving performance and portability.

Directive-based abstractions like OpenACC simplify GPU programming by using com-

piler pragmas to offload computations and manage data movement automatically [15]. While

OpenACC can achieve performance comparable to low-level CUDA programming with mini-

mal programming effort in certain scenarios [16], its reliance on compiler optimizations may

limit fine-grained control and effectiveness in irregular workloads. Algorithmic skeleton

frameworks, including SkelCL and SkePU, simplify GPU programming by offering prede-

fined parallel patterns such as map, reduce, and scan, combined with automated memory

management and multi-GPU support [17] [18]. By abstracting low-level GPU details, these

libraries significantly enhance developer productivity, enabling concise and efficient parallel

implementations. They have successfully demonstrated competitive performance in appli-

cations like medical imaging, numerical simulations, and data-intensive computations [18].

However, their applicability is typically restricted to computations that naturally align with

provided skeleton patterns. C++ template-based libraries such as Kokkos and RAJA offer

portable parallelism by abstracting execution patterns via templates, allowing single-source

code to compile across multiple backends (CUDA, HIP, OpenMP) [19] [20]. Both frame-

works have successfully demonstrated significant productivity gains and high performance

in large-scale scientific applications [21]. However, their template-heavy programming style

13

introduces complexity, steep learning curves, and potential difficulty in debugging and main-

taining codebases, particularly for developers unfamiliar with advanced C++ concepts.

Thrust simplifies GPU programming with an STL-like interface for common parallel

algorithms, such as sorting, reductions, and transformations, lowering the barrier to GPU

acceleration [22]. However, it primarily supports NVIDIA GPUs, limiting cross-platform

portability, and its high-level approach may obscure low-level optimizations. Cross-platform

extensions like HIP and SYCL enhance portability across architectures. HIP offers source

compatibility with CUDA for AMD GPUs (Liu et al., 2016), while SYCL supports hetero-

geneous execution on CPUs, GPUs, and FPGAs from standard C++ [23]. Nevertheless,

HIP remains limited mostly to AMD/NVIDIA hardware, and SYCL’s runtime may intro-

duce performance overhead. The Alpaka framework provides backend-agnostic parallelism

through C++ templates, enabling unified coding across accelerators like CUDA, HIP, and

OpenMP [24]. Alpaka emphasizes performance portability and control but introduces com-

plexity, a steep learning curve, and increased compilation times due to extensive template

use.

NVIDIA’s NVC++ compiler abstracts GPU programming by automatically offloading

standard C++17 parallel algorithms (e.g., std::reduce) to GPUs, simplifying development

and achieving strong performance with minimal code changes. However, its implicit offload-

ing may hinder precise performance tuning and efficient memory management. FastFlow

supports efficient CPU-GPU orchestration through pipeline-based parallel patterns suited

to streaming applications like multimedia processing and financial analytics [25]. Despite its

strengths in structured workflows, FastFlow requires explicit pipeline structuring, limiting

its applicability to irregular or less structured parallelism. PHAST provides single-source,

STL-inspired C++ abstractions, enabling portable parallel programming across CPUs and

GPUs, demonstrated effectively in cryptography and machine learning domains [26]. How-

ever, PHAST’s abstraction may constrain fine-grained optimizations and flexibility in irreg-

ular computational scenarios.

While high-level abstraction frameworks have made heterogeneous computing more ac-

cessible by simplifying parallelism, memory management, and hardware targeting, their

reliance on external libraries introduces a host of development and maintenance challenges.

14

These tools often follow independent lifecycles, with updates and feature changes outside

the control of the application developer. This can lead to integration issues, unexpected

behavior, and long-term maintainability concerns, especially in large or tightly coupled

systems. Testing becomes more complex due to dependency variability, and reproducing

behavior across versions may be difficult. Moreover, these libraries are rarely accompanied

by guidance on designing or extending abstractions, making it harder for developers to

adapt them to evolving requirements. They may fail to integrate into systems that are de-

signed to address novel or specific problems, which can have critical implications for software

architectural decisions.

Furthermore, the general-purpose nature of these tools often introduces performance

overhead compared to specifically targeted and optimized implementations, making them

less suitable for systems where maximum efficiency and fine-grained control are essential. A

notable example is Graphitti, where integrating such abstractions may not only require sub-

stantial effort—potentially necessitating a complete architectural rewrite—but also result

in reduced control and suboptimal performance compared to the existing low-level CUDA

implementation. As a result, while intended to reduce effort, such abstractions can inad-

vertently increase development complexity and compromise the long-term adaptability of

software in domain-specific or high-performance computing environments.

15

Chapter 4

METHODOLOGY

4.1 Abstraction Categorization

This section categorizes various abstraction mechanisms designed to simplify and optimize

the development of heterogeneous applications using CUDA. The objective is to analyze

how different types of abstractions either support or hinder development in systems that

integrate both CPU and GPU components, and to identify the specific problems they aim

to solve. For each abstraction category, the section outlines its purpose and benefits, and

illustrates its practical use by referencing an existing library or framework that exhibits

the corresponding characteristics. As a result, a single abstraction may appear in multiple

categories if it embodies features relevant to each. Insights from this can help in designing

abstractions targeted at specific problem areas.

• Memory Management Abstractions

Purpose: Simplify and automate memory allocation, deallocation, and data transfers

between host (CPU) and device (GPU).

Description: In native CUDA or similar frameworks, memory operations must be

explicitly managed using routines such as cudaMalloc, cudaMemcpy, and cudaFree.

These low-level operations introduce verbosity and distract from the core computa-

tional logic. Abstractions such as memory managers, buffer wrappers, or container-

based memory holders encapsulate low-level memory operations, simplifying develop-

ment by providing clean interfaces for allocation, transfer, and deallocation. While

these abstractions may support lifecycle management through destructors, enable

deep-copy semantics, and integrate with unified memory models, their primary pur-

pose is to offer a structured way to hide implementation details—without completely

relinquishing control over memory behavior.

16

Listing 4.1: Example of Memory Management Abstraction

DeviceVector<float> d_vec(100);

d_vec.copyToDevice(); // Abstracts cudaMalloc and cudaMemcpy

Representative Tools: DeviceVector, Kokkos::View, thrust::device vector,

PHAST::gpu vector.

Benefits: Reduces boilerplate code, improves code manageability, may provide safer

memory access patterns, and is particularly beneficial for large data structures or

frequent memory transfers.

• Execution and Kernel Launch Abstractions

Purpose: Simplify the process of configuring and launching kernels by abstracting

thread block/grid setup and execution control.

Description: Kernel launch configuration using the traditional

<<<gridDim, blockDim>>> syntax is replaced with abstractions like parallel for,

lambda-based dispatch, or policy-driven execution. These interfaces allow developers

to define computation declaratively, separating algorithm logic from hardware config-

uration. Libraries like Kokkos and RAJA provide structured interfaces where kernel

behavior is parameterized by policy.

Listing 4.2: Example of Execution and Kernel Launch Abstraction

Kokkos::parallel_for("scale", 100, KOKKOS_LAMBDA(int i) {

data[i] *= 2.0f;

});

Representative Tools: Kokkos::parallel for, RAJA::forall, custom

launchKernel() templates.

Benefits: Increases readability, reduces launch-time errors. These abstractions im-

prove code maintainability and reduce the likelihood of misconfigurations related to

launch parameters.

17

• Data and Container Abstractions

Purpose: Provide high-level data structures that abstract GPU memory access and

layout using STL-like interfaces.

Description: Containers such as vectors, matrices, or multidimensional views ab-

stract raw device pointers and promote safer memory access by enforcing structured

access patterns through familiar interfaces (e.g., iterators, accessors). These GPU-

aware abstractions often manage memory implicitly, reduce the likelihood of errors

such as invalid access, and support parallel algorithms (e.g., map, reduce, transform),

contributing to more robust and maintainable code.

Listing 4.3: Example of Data and Container Abstraction

thrust::device_vector<int> vec(100, 1);

thrust::transform(vec.begin(), vec.end(), vec.begin(),

[] __device__ (int x) { return x * 3; });

Representative Tools: thrust::device vector, Kokkos::View, PHAST::gpu matrix.

Benefits: Provides safer data handling, integrates with parallel algorithms, and en-

ables implicit memory optimization (e.g., coalesced access, alignment). These abstrac-

tions allow developers to manipulate data using familiar paradigms without dealing

directly with device pointers or raw memory.

• Execution Policy Abstractions

Purpose: Decouple algorithm logic from execution hardware by parameterizing par-

allel execution strategies.

Description: Execution policies allow the same algorithm to run on different hard-

ware (e.g., CPU sequential, OpenMP, CUDA) simply by changing the policy pa-

rameter without modifying the logic itself. This technique aligns with performance-

portability goals and allows for architecture-aware tuning.

18

Listing 4.4: Example of Execution Policy Abstraction

RAJA::forall<RAJA::cuda_exec<256>>(RAJA::RangeSegment(0, N), [=] __device__ (

int i) {

output[i] = input[i] * 4;

});

Representative Tools: RAJA::forall, Kokkos::RangePolicy, execution traits in

Alpaka/SYCL.

Benefits: Encourages reuse of algorithms across backends, minimizes platform-specific

code branches, and supports fine-grained tuning.

• Single-Source Programming Model

Purpose: Enable writing a unified codebase that runs on both CPUs and GPUs

using shared function definitions and compilation paths.

Description: Using qualifiers like host device (in CUDA), developers write

functions that can be executed on both CPU and GPU. This model is further enhanced

in frameworks like SYCL or stdpar with device-agnostic lambdas. Single-source mod-

els improve code maintainability and allow unified logic flow across architectures.

Listing 4.5: Example of SingleSource Programming Model

__host__ __device__ float square(float x) {

return x * x;

}

Representative Tools: CUDA dual qualifiers, SYCL device lambdas.

Benefits: Reduces code duplication, supports conditional compilation, and promotes

architectural symmetry.

• Compiler-Based and Directive-Based Abstractions

Purpose: Allow incremental GPU parallelism via compiler hints without requiring

full kernel rewrites.

19

Description: Compiler- or directive-based models such as OpenACC use directives

to annotate loops or code regions for parallel execution, allowing the compiler to

automatically generate kernels targeting CUDA or similar frameworks. This model is

well-suited for large, monolithic legacy codebases where gradual GPU enablement is

preferred, as it requires minimal modifications to the existing code structure.

Listing 4.6: Example of Compiler-Based and Directive-Based Abstraction

#pragma acc parallel loop

for (int i = 0; i < N; ++i) {

data[i] *= 2;

}

Representative Tools: OpenACC, PGI/NVHPC, Intel oneAPI DPC++ extensions.

Benefits: Low entry barrier for GPU adoption, promotes rapid prototyping, and

preserves serial logic.

• Backend-Agnostic Abstractions

Purpose: Provide a unified interface for deploying to CUDA, HIP, OpenCL, SYCL,

or other accelerators without source-level changes.

Description: TThese frameworks abstract hardware-specific APIs behind a com-

mon runtime by relying on backend mapping and toolchain support to target the

appropriate hardware. Using configuration-based dispatch, they select the correct

implementation at compile time or runtime based on the compiler and platform.

Listing 4.7: Example of Cross-Platform and Backend-Agnostic Abstraction

q.submit([&](sycl::handler& h) {

h.parallel_for(N, [=](int i) {

data[i] += 10;

});

});

20

Representative Tools:

SYCL (DPC++), Alpaka, Kokkos, HIP, OneAPI, OpenCL.

Benefits: Codebase unification, vendor independence, and increased code reuse across

systems (NVIDIA, AMD, Intel etc.).

• Template and Metaprogramming Abstractions

Purpose: Use C++ templates and compile-time techniques to specialize code for

host and device execution without duplication.

Description: These abstractions use C++ metaprogramming techniques to gener-

ate specialized code paths for CPU and GPU execution. By resolving the execution

context at compile time, they enable performance-portable designs and are often struc-

tured as header-only or lightweight template-based libraries.

Listing 4.8: Example of Template and Metaprogramming Abstraction

template<typename ExecSpace>

void compute(ExecSpace&& exec) {

if constexpr (is_gpu_exec<ExecSpace>) {

launch_gpu_kernel<<<...>>>(...);

} else {

run_cpu_loop();

}

}

Representative Tools: CUDA ARCH macro for device-specific compilation or branch-

ing, Kuricheti’s CUDA metaprogramming constructs [27].

Benefits: Enables compile-time branching, unifies host/device logic, and maximizes

code reuse in templated libraries.

21

4.2 Device Vector

This section presents the methodology behind the design and implementation of the De-

viceVector class—an abstraction we developed to streamline memory management and GPU

data access in Graphitti. It falls into the hybrid category of memory management and data

& container abstractions, as the primary motivation behind this design is to simplify GPU

memory handling in Graphitti. As explained in Chapter 2, Graphitti currently relies on ver-

bose and difficult-to-maintain code structures to manage device and host memory separately,

making it difficult to maintain and limiting overall code manageability in its heterogeneous

architecture. The design of DeviceVector can serve as a foundation for other heterogeneous

simulation frameworks, particularly those used in large-scale graph-based and neural sim-

ulations. Such simulations may involve frequent and precise memory operations—such as

copying data between host and device at each epoch—where the accuracy of state tran-

sitions is critical. Proper memory handling ensures that simulation results remain valid

and interpretable, which is essential for analyzing, understanding, and drawing meaningful

conclusions from the generated data. In this context, data movement becomes a core part

of the simulation logic and must be handled in a controlled and explicit manner by the de-

veloper. This chapter also outlines the key design decisions and integration steps involved

in the development of DeviceVector.

The DeviceVector class encapsulates core responsibilities such as device memory alloca-

tion, host-device data transfer, and safe GPU memory access, all within a reusable, STL-

compatible container interface. By abstracting low-level CUDA operations (e.g., cudaMalloc,

cudaMemcpy, cudaFree), it reduces boilerplate code and developer burden, promoting a

higher-level programming model that mirrors standard CPU-side container usage. This

unified interface streamlines memory management across CPU and GPU, minimizes code

duplication, and enhances code maintainability by adopting familiar host-side development

patterns within GPU contexts.

Crucially, DeviceVector also reinforces some degree of logical relationship between CPU

and GPU data. Although physically separated in memory, host and device data often

correspond to the same logical entity within a simulation (e.g.,weight vector of a vertex).

22

Maintaining this correspondence is essential for program correctness, especially in hybrid

CPU-GPU execution contexts where some computations may be offloaded to the GPU and

later synchronized back with the CPU. The abstraction ensures that these logically linked

data structures can be synchronized easily and maintain consistent meaning throughout the

simulation. Technically it offer a clean separation between host and device data internals

representations—while maintaining compatibility with raw CUDA device pointers and ker-

nel calls.

From an architectural standpoint, the abstraction follows general software engineering prin-

ciples such as modularity, encapsulation, and extensibility. It is implemented using tem-

plates to support generic types and can be extended or specialized for complex data layouts.

While broadly applicable to various CUDA applications, the design of DeviceVector is specif-

ically tailored with the requirements of Graphitti in mind, ensuring compatibility with its

simulation kernels and dataflow mechanisms.

4.2.1 Design Approach

The DeviceVector<T> class was implemented using C++ templates to support arbitrary

data types. The class follows a composition-based design, internally managing:

• std::vector<T> object for host-side storage.

• raw T* pointer (d ptr) representing device memory.

This approach allows DeviceVector to support all STL vector-like operations for host-

side logic, while explicitly providing GPU memory operations via member functions ex-

plained below. All these function must be explicitly called by the developer, so it is the

caller’s responsibility to manage the memory lifecycle in coordination. By requiring explicit

allocation, the design provides developers with precise control over GPU memory man-

agement, which is essential for performance tuning and avoiding unnecessary overhead in

high-performance simulation workloads.

• allocateDeviceMemory() - This function is responsible for allocating memory on the

GPU corresponding to the current size of the host container. Internally, it invokes

23

cudaMalloc() to allocate a contiguous block of device memory large enough to store

all elements held in the host-side vector. The size of the allocation is derived from the

number of elements in the vector and the size of the type T. It ensures that the device

memory is properly allocated and ready to be used in CUDA kernels.

• copyToDevice() - This function transfers data from the host-side container to the

previously allocated device memory. Internally, it uses cudaMemcpy() with the

cudaMemcpyHostToDevice flag to perform the memory copy. This function assumes

that device memory has already been allocated via allocateDeviceMemory() and

that the size of the host container matches the expected size. This explicit transfer

operation gives developers control over when and how data is synchronized between

host and device and avoids hidden or implicit memory transfers that can degrade

performance or obscure correctness, which is particularly important in large-scale

simulations or tightly-tuned GPU applications.

• copyToHost() - It performs the reverse of copyToDevice()—it transfers data from

the device memory back into the host-side container. It uses cudaMemcpy() with the

cudaMemcpyDeviceToHost flag and assumes that the device memory has been allo-

cated and populated with valid data. This function is typically called after CUDA

kernel execution when results or updated data need to be retrieved for further pro-

cessing on the CPU.

• freeDeviceMemory() - It deallocates memory on the GPU previously allocated with

allocateDeviceMemory(). It internally calls cudaFree() on the device pointer and

resets the internal device memory state to prevent accidental reuse or access. This

function must be called manually to avoid GPU memory leaks, particularly in long-

running simulations or iterative workloads and it reinforces disciplined memory man-

agement and encourages developers to treat GPU memory as a critical, limited re-

source.

24

4.2.2 Design Choices

The implementation of the DeviceVector<T> abstraction was guided by deliberate design

choices aimed at balancing usability, performance, and compatibility within heterogeneous

CUDA applications. These choices prioritize clarity, composability, and explicit control over

memory, while remaining easy to integrate into existing C++ workflows.

• Favor Composition Over Inheritance

The class design favors composition by containing a std::vector<T> internally, rather

than inheriting from it. This choice provides better encapsulation, enabling the class

to manage GPU memory independently of the host container’s interface. It also avoids

the complexities of exposing and maintaining base class internals, and allows greater

flexibility in controlling how and when specific functions are forwarded or overloaded.

Composition ensures a clear separation between host-side logic and GPU-side control.

• Default Host Behavior

The DeviceVector is designed to behave like a std::vector<T> by default when used

on the host. This eliminates the need for developers to explicitly extract or access

the internal container. Through implicit conversion and function forwarding, host

code can perform standard operations (e.g., indexing, resizing, appending) as with a

normal STL vector. This improves usability and ensures the abstraction is intuitive

for developers familiar with standard C++ containers.

• Device-Side Simplicity via Raw Pointer Access

The DeviceVector class is intentionally designed to expose the device memory as a

raw T* pointer when passed into CUDA kernels. This reflects the underlying GPU

programming model, where device addresses are raw pointers by nature. The abstrac-

tion does not attempt to wrap device-side behavior, perform internal bounds checking,

or handle invalid memory access at runtime. Instead, it mirrors the expectations of

writing raw CUDA applications—developers are still responsible for ensuring proper

memory allocation, synchronization, and safe access patterns.

25

• Selective Forwarding of STL Member Functions

Only a minimal subset of commonly used functions such as push back(), resize(),

and operator[] are explicitly forwarded to the internal std::vector<T>. This ap-

proach balances convenience with control, exposing only essential operations needed

for typical use cases while keeping the interface clean. It avoids the need to re-

implement the full std::vector API, which would add unnecessary complexity and

maintenance cost.

• Explicit Memory Management and Synchronization Model

The class does not use CUDA’s unified memory or other unified dynamic memory oper-

ators. Instead, it relies on manual memory allocation and explicit synchronization, re-

quiring developers to call functions like allocateDeviceMemory(), copyToDevice(),

and copyToHost() as needed. This approach ensures transparency, fine-grained con-

trol, and predictable performance, especially in applications where memory usage and

synchronization patterns are critical to correctness and efficiency.

• Implicit Conversion to T* for Kernel Calls

To enable seamless integration with CUDA kernels, the class overloads the cast op-

erator to allow implicit conversion from DeviceVector<T> to a raw T* (i.e., device

pointer). This eliminates the need for explicit calls to .dataDevice() or .getPointer(),

allowing DeviceVector objects to be passed directly to kernel launch arguments in a

syntactically clean and intuitive way.

• Implicit Conversion to std::vector<T>& for Host Compatibility

The class also provides an implicit conversion to std::vector<T>&, allowing it to

interoperate with existing host code that expects a standard container. This ensures

backward compatibility and simplifies integration into legacy or external codebases

without requiring major refactoring. Developers can use DeviceVector in algorithms,

iterators, or STL-compatible functions without breaking existing logic.

26

• Explicit Type Set

Unlike general-purpose containers that support arbitrary template types, the

DeviceVector class deliberately restricts its supported types through a compile time

type checking. By explicitly enumerating supported types—such as int, float, and

bool—this abstraction avoids undefined behavior and ensures that memory man-

agement and device access remain correct at all points. This choice was made in

consideration of the Graphitti simulation platform, which already operates using a

fixed and well-defined set of data types. Moreover, this constraint helps safeguard the

abstraction from being misused with unsupported or complex object types, such as

classes with dynamic memory or virtual functions, which are incompatible with raw

GPU memory access, thereby preventing silent errors or subtle bugs from arising in

future extensions. At the same time, this approach preserves backward compatibility

with existing code and provides a clear path for extending the type set in a controlled

and predictable manner, should additional types need to be supported in the future.

• Conditional Compilation

Since DeviceVector includes both host and device-side operations, its implementation

is conditionally compiled using the CUDACC macro, which is defined by nvcc during

device-side compilation. This ensures that device-specific logic and pointers are ex-

cluded from host-only builds, avoiding compilation errors. Unlike application-defined

macros USE GPU, which cannot differentiate between host and device translation units,

CUDACC provides a reliable mechanism for this. This distinction is essential because

DeviceVector is included in both host headers (.h) and device implementation files

(d.cpp), and headers in C++ are not compiled independently. Instead, compilation

context is determined by the source file including them. Using CUDACC ensures that

CUDA constructs are only processed by nvcc when compiling device files, preserving

compatibility and correctness across heterogeneous build configurations.

27

4.2.3 Integration

• Replacing std::vector with DeviceVector

Each data member of std::vector type within all neural vertex classes was systemati-

cally refactored to use DeviceVector instead. This transformation was applied across

classes such as AllSpikingNeurons, AllIFNeurons, and other derived vertex types.

Listing 4.9: Replacement of vector by DeviceVector

class AllIFNeurons {

....

vector<BGFloat> Trefract_;

};

class AllIFNeurons {

....

DeviceVector<BGFloat> Trefract_;

};

• Removing Device Properties Structures

The structures that held raw device pointers for each data member, as mentioned

in Section 2.1, were removed. With the adoption of DeviceVector, this layer became

unnecessary, as each instance now encapsulates both host and device memory.

Example:

Listing 4.10: Removal of DeviceProperties

struct AllIFNeuronsDeviceProperties {

....

BGFloat *Trefract_;

};

28

• Replacing Device Memory Operations with method call

All CUDA memory management operations such as cudaMalloc, cudaMemcpy, and

cudaFree were replaced with method calls.

Example:

Listing 4.11: Replacment of CUDA operations with method calls

HANDLE_ERROR(cudaMalloc(Trefract_,...));

HANDLE_ERROR(cudaMemcpy(Trefract_, ..., cudaMemcpyHostToDevice));

HANDLE_ERROR(cudaMemcpy(..,Trefract_, ...cudaMemcpyDeviceToHost));

HANDLE_ERROR(cudaFree(Trefract_));

Trefract_.allocateDeviceMemory();

Trefract_.copyToDevice();

Trefract_.copyToHost()

Trefract_.freeDeviceMemory();

• Modifying CUDA Kernels

All CUDA kernels in neural vertices classes were modified to accept raw pointers as

argument encapsulated by device vector itself instead of struct holding device pointers.

Moreover, within the kernel, data was accessed directly rather than having indirection

using device struct.

Example:

Listing 4.12: Modifying CUDA Kernels

__global__ void advanceLIFNeuronsDevice(....,

AllIFNeuronsDeviceProperties *allVerticesDevice) {

...allVerticesDevice->Trefract_[i];

}

....

advanceLIFNeuronsDevice<<<blocksPerGrid, threadsPerBlock>>>(

allIFNeuronsDeviceProperties);

29

__global__ void advanceLIFNeuronsDevice(..., BGFLOAT *Trefract_,

BGFLOAT *Vthresh_) {

...Trefract_[i];

}

....

advanceLIFNeuronsDevice<<<blocksPerGrid, threadsPerBlock>>>(Trefract_,

Vthresh_);

30

Chapter 5

RESULTS

5.1 Quantative Evaluation

This section presents the results of integrating DeviceVector into Graphitti. Given the

limited availability of well-defined metrics for evaluating programming abstractions, a set

of standard software engineering metrics is employed to assess its effectiveness. In addition,

we evaluate the performance overhead, with the expectation that DeviceVector introduces

minimal to no additional computational overhead.

5.1.1 Code Reduction

Code reduction refers to the potential decrease in lines of code (LOC) resulting from the in-

tegration of DeviceVector. A lower LOC often correlates with simpler, more maintainable,

and faster-to-develop implementations.

Lines of Code (LOC) Comparison

Before Integration:

LOCNeuro = 1514

After Integration:

LOCNeuro = 1428

LOCDeviceVector = 341

LOCTotal = 1428 + 341 = 1769

Reduction:

LOCNeuro = 1514 - 1428 = 86

Percentage Reduction =
(

86
1514

)
× 100 ≈ 5.68%

31

It shows that although the introduction of DeviceVector increases the lines of code

due to its own definition and implementation, it significantly reduced the code for neural

vertices. This reduction was expected, as it enabled the removal of all device-side structures

and replaced low-level CUDA operations with a single method call. This means that as

DeviceVector is progressively adopted throughout the codebase, the overall lines of code

should steadily decrease, ultimately resulting in a net reduction.

5.1.2 Boilerplate Ratio

Boilerplate refers to repetitive code written to handle tasks such as device memory manage-

ment—code that is necessary for execution but not part of the core simulation logic. The

Boilerplate Ratio quantifies the proportion of such auxiliary code relative to the total lines

of code, serving as an indicator of structural or syntactic overhead. High boilerplate often

results from low-level implementations that lack abstraction. DeviceVector addresses this

by encapsulating common memory and synchronization patterns into reusable components.

Before Integration

LOCNeuro = 1514

LOCBoilerplate = 139

Boilerplate Ratio ≈ 9%

After Integration

LOCNeuro = 1428

LOCBoilerplate = 39

Boilerplate Ratio ≈ 2.7%

The reduction in boilerplate ratio was expected, as DeviceVector now encapsulates mem-

ory management on the device. This eliminates the need to repeatedly write boilerplate

CUDA code, thereby reducing development effort and minimizing the risk of human error.

32

In fact, during integration process a bug was identified in one of the classes, where

GPU operations—including allocation and memory transfers—were mistakenly applied to

the wrong data object multiple times. This type of error, caused by redundant code, should

now be reduced.

5.1.3 Code Affected

Code Affected refers to the set of code locations exposed to change during the integration

process. It includes all functions, classes, or modules that had to be touched, examined,

or reviewed—regardless of whether they were directly modified. By capturing both actual

modifications and reviewed code, this measure reflects the breadth of the integration effort

and provides insight into the extent to which the new abstraction actually impacts the

existing codebase. It serves as an indicator of the mental overhead and review burden

imposed on developers, offering a proxy for the invasiveness of the change.

Classes Affected (replacing vector with DeviceVector etc.) = 4

Total Classes = 4

Host Methods Affected = 0

Total Host Methods = 35

Device Methods Affected (Kernels etc.) = 25

Total Device Methods = 25

This shows on the host side, integrating DeviceVector requires minimal changes, as it inter-

nally overloads the operators and methods of std::vector to preserve interface compatibility.

As a result, once the substitution is made, the core logic remains unchanged. This makes the

process low risk, particularly given that most modern code editors support reference track-

ing, allowing std::vector instances to be reliably and efficiently replaced with DeviceVector.

In contrast, on the device side, all methods and kernels are restructured to accommo-

33

date GPU-specific behavior. Specifically, all kernel signatures are updated to accept data

parameters explicitly. Consequently, all references to these parameters within the kernel

and methods must also be updated, eliminating the need for indirection through structures.

Despite the breadth of these changes, the integration remains low risk, as inconsistencies are

reliably caught at compile time. Legacy kernel signatures or continued use of structure-based

indirection result in compiler errors, thereby minimizing the likelihood of subtle runtime

bugs and facilitating early detection during development.

Moreover, modifying memory management operations is relatively less error-prone, as

the changes primarily affect how data is handled rather than how it is referenced. For each

data member, the original code using explicit CUDA operations and the new code using

method calls both reference the same variable names same number of times, reducing the

likelihood of introducing errors during refactoring.

5.1.4 Symbolic Complexity

Symbolic Complexity quantifies the total number of distinct symbols or variables involved

in individual code statements that are modified during the integration of an abstraction

or refactoring process. A lower symbol count indicates cleaner abstraction and reduced

cognitive load, while a higher count may suggest verbose, error-prone operations. This

metric is useful for evaluating how well an abstraction simplifies common operations

Before Integration

Symbols in LOC Modified = 957

After Integration

Symbols in LOC Modified = 518

Reduction

Change = 957 - 518 = 439

Percentage Reduction =
(
439
957

)
× 100 ≈ 45.87%

This demonstrates a significant reduction in the number of symbols used in the modified

34

statements. This outcome was expected, as DeviceVector abstracts away verbose and

complex CUDA operations that typically require multiple parameters per call, replacing

them with concise method calls. While kernel signatures saw an increase in parameters due

to the unwrapping of device structures, this increase did not substantially impact the overall

symbol count. In total, the change resulted in a net reduction in symbolic complexity.

5.1.5 Cyclomatic Complexity

Cyclomatic Complexity quantifies the number of independent control flow paths within a

function or code unit. It reflects the structural decision complexity introduced by conditional

constructs such as if, for, while, and switch. A higher cyclomatic complexity indicates more

branching logic, which can increase testing effort and reduce maintainability. This metric is

useful for evaluating how well an abstraction reduces conditional logic or improves control

flow simplicity.

Before Integration

Cyclomatic Complexity = 48

After Integration

Cyclomatic Complexity = 46

This demonstrates that there is no significant change in cyclomatic complexity following

the integration of DeviceVector. This outcome was expected, as DeviceVector neither

introduces nor eliminates branching logic within the existing code. The slight reduction

observed may be attributed to the removal of conditional compilation statements previously

used for managing device-specific structures.

5.1.6 Runtime Performance Overhead

Performance overhead refers to the additional time or computational resources introduced

by an abstraction or system component compared to a baseline implementation. It reflects

the trade-off between ease of use and efficiency, often arising when higher-level abstractions

simplify development at the cost of lower-level performance optimizations. Minimizing per-

35

formance overhead is critical in performance-sensitive domains such as GPU programming,

where indirect control over memory and execution can lead to measurable slowdowns.

Below is the runtime execution time for one of the simulation test cases, averaged over

five runs.

Execution Time (in seconds):

Before Integration

CPU = 650.4

GPU = 30.4

After Integration

CPU = 657.6

GPU = 29.6

The runtime results for both CPU and GPU show minimal or no change in performance

after integrating DeviceVector. This aligns with expectations, as DeviceVector merely en-

capsulates details, while the underlying GPU memory operations remain unchanged.

5.2 Qualitative Evaluation

This section presents a qualitative comparison of DeviceVector against existing abstrac-

tions in terms of ease of integration, usability, control, and portability. It first defines the

levels—high, medium, and low—along with their associated indicators, and then provides

a comparison table that highlights each abstraction’s characteristics, assigning levels based

on those characteristics.

5.2.1 Ease of Integration

Ease of integration refers to how smoothly an abstraction can be adopted within an existing

codebase or workflow. It considers factors such as the amount of refactoring required, com-

patibility with existing components, and toolchain dependencies. A high ease of integration

36

minimizes disruption and accelerates adoption without requiring significant architectural

changes. DeviceVector is designed to closely mirror the interface of std::vector, en-

abling developers to incorporate it into the existing Graphitti codebase with minimal mod-

ifications. In most cases, replacing std::vector with DeviceVector—along with updating

memory management and kernel/function parameter handling—is sufficient, without the

need to alter core logic.

Table 5.5: Ease of Integration Levels

Level Indicators

High Easily integrates with existing code; minimal changes required; Localized

refactoring and no toolchain changes.

Medium Requires moderate effort; may need some refactoring or tool changes; Signa-

ture changes etc.

Low Major refactoring required; disrupts architecture or needs new build systems;

new programming model and incompatibility with existing logic.

37

Table 5.6: Ease of Integration Comparison

Framework / Tool(s) Ease of Integration Integration Characteristics

DeviceVector High Directly replaceable for std::vector; minimal

restructuring for CUDA (application specific).

Kokkos / RAJA Medium Requires parallel for (loops), policy setup

and replacing data with Views (no support for

methods).

Thrust Low Easy for simple operations, but harder to inte-

grate in large codebases due to lack of custom

kernel support.

SYCL Low Demands significant restructuring to adopt

buffers, accessors, and explicit device

queues;kernel launches must follow SYCL

model.

OpenACC / NVC++ High Minimal changes needed; annotate existing

loops with pragmas.

OpenCL Low Requires explicit management of platforms, con-

texts, and command queues, increasing boiler-

plate code.

SkelCL / SkePU Low Requires adaptation to skeleton patterns; lim-

ited general-purpose operations.

FastFlow Low Straightforward for stream-based CPU

pipelines; minimal native GPU support;

PhAST Low Needs external code generation and configu-

ration file handling; integration is non-trivial;

lacks general-purpose kernel support.

38

5.2.2 Usability

Usability refers to how easily a developer can learn, understand, and effectively use a pro-

gramming abstraction or tool. It encompasses the clarity of the interface, learning curve,

error proneness, and how well the design aligns with developer expectations. High us-

ability reduces cognitive load and accelerates development without sacrificing correctness.

DeviceVector supports this by providing intuitive methods such as .copyToDevice(),

.copyToHost(), and .getDevicePtr() for accessing and synchronizing memory. These

methods follow conventions familiar to C++ developers, while abstracting away boilerplate

CUDA operations like cudaMalloc, cudaMemcpy, and cudaFree.

Table 5.7: Usability Levels

Level Indicators

High Intuitive and easy to use; Familiar syntax; resembles existing containers, min-

imal boilerplate, clear naming, fast developer onboarding.

Medium Understandable with some learning; needs familiarity with templates, requires

reading documentation, moderate boilerplate or control flow understanding.

Low Verbose with steep learning curve; complex low-level constructs, unintuitive

design or unfamiliar programming paradigm.

39

Table 5.8: Usability Comparison

Framework / Tool(s) Usability Usability Characteristics

DeviceVector High Intuitive methods like .copyToDevice() etc.

Kokkos / RAJA Medium Requires policy understanding; flexible but has a

learning curve.

Thrust High STL-like containers; easy to use

SYCL Low Verbose with complex low-level control.

OpenACC / NVC++ High Directive-based; integrates with minimal code

changes.

OpenCL Medium Low-level and verbose; kernels written as strings etc.

SkelCL / SkePU Low Skeleton-templates based; verbose and only supports

specific patterns.

FastFlow Low Intuitive for Stream-based and multicore CPUs, min-

imal for GPU applications.

PhAST Low Niche, stencil-specific tool; relies on code generation

and unfamiliar configuration file syntax.

5.2.3 Portability

Portability refers to the ease with which a program, abstraction, or framework can run across

different hardware architectures, platforms, or compilers with little to no modification.

High portability allows code to adapt to various environments—such as CPUs, GPUs from

different vendors without requiring significant rewrites.

40

Table 5.9: Portability Levels

Level Indicators

High Runs across multiple hardware platforms; vendor-neutral design; supports

both CPU and GPU targets without platform-specific logic.

Medium Portable with moderate effort; may require backend-specific tuning or condi-

tional compilations;

Low Tied to a specific vendor; designed for specific application or strong depen-

dence on platform specific APIs drivers.

Table 5.10: Portability Comparison

Framework / Tool(s) Portability Portability Characteristics

DeviceVector Low CUDA-specific and targeted for Graphitti.

Kokkos / RAJA High Supports multiple backends (CUDA, HIP, OpenMP);

portable across NVIDIA, AMD, and CPUs.

Thrust Low CUDA-based; not portable outside NVIDIA GPUs.

SYCL High Cross-platform C++ abstraction (via DPC++) sup-

porting NVIDIA, AMD, Intel, and CPU targets.

OpenACC / NVC++ Medium–High Directive-based model supported by multiple compil-

ers; portable across CPU and GPU with compatible

toolchains.

OpenCL High Vendor-neutral; works across NVIDIA, AMD, Intel

GPUs, and CPUs.

SkelCL / SkePU High Built on OpenCL backend, offering portability.

FastFlow Low Optimized for multicore CPUs; limited GPU support.

PhAST Low Stencil-specific tool with niche applicability; limited

portability and requires code generation.

41

5.2.4 Control

Control refers to the degree of programmability a framework provides over execution be-

havior, including memory management, kernel launch configuration, and synchronization.

It also encompasses the nature of control—whether it is user-defined (explicit) or fixed and

managed by the compiler or runtime. DeviceVector offers a balanced level of control by

abstracting routine operations like memory allocation and data transfer, while still allow-

ing developers to explicitly manage when and how data is moved between host and device

using methods like .copyToDevice() and .copyToHost(). This enables fine-grained per-

formance tuning without fully exposing the developer to low-level CUDA APIs, achieving

a compromise between flexibility and simplicity.

Table 5.11: Control Levels

Level Indicators

High Full control over memory, execution, or synchronization; launch configuration

(threads, blocks) control etc.

Medium Partial control with some abstractions; tuning possible but constrained.

Low Minimal or no direct control; no manual memory handling or kernel tuning

42

Table 5.12: Control Comparison

Framework / Tool(s) Control Level Control Characteristics

DeviceVector High Explicit control over GPU memory operations; no

change in kernel launch.

Kokkos / RAJA Medium Uses execution/memory policies to offer control; al-

lows backend selection, tuning, and memory spaces.

Thrust Low Offers STL-like operations with less control over mem-

ory and kernel launches.

SYCL Medium Explicit control over memory and execution; but limits

tuning of launch configuration and shared memory.

OpenACC / NVC++ Low Abstracts memory and kernel management via direc-

tives.

OpenCL High Complete low-level control over memory, device selec-

tion etc.

SkelCL / SkePU Low Hides memory and execution details behind skeletons;

limited ability to control memory or customize execu-

tion patterns.

FastFlow Low Stream-based CPU abstraction with limited control

over GPU memory.

PhAST Low Focused on stencil automation; memory layout and

kernel control are mostly internal or auto-generated.

5.2.5 Extensibility

DeviceVector is designed with extensibility in mind, allowing future enhancements without

disrupting existing functionality. Its templated architecture can be extended to accommo-

date new data types or memory access patterns as simulation requirements evolve. Because

it encapsulates host and device memory logic in a unified interface, developers can introduce

advanced features—like RAII synchronization strategies, or device-side views for complex

43

object heirarchies—while preserving compatibility with current code. This modularity en-

sures that DeviceVector can grow alongside Graphitti’s evolving GPU capabilities.

5.2.6 Logical Relationship between device and host data

In traditional CUDA codebases, it is common to manage host-side and device-side data sep-

arately, often using distinct variables that merely share the same name or rely on comment-

based conventions to indicate their relationship. However, these variables are logically dis-

connected in the actual implementation—there is no formal structure binding them together.

This loose association can lead to bugs, mismanaged memory, or accidental inconsistencies

in data movement between the host and the GPU.

In contrast, the DeviceVector abstraction explicitly encapsulates both host and device

representations within a single object.The host-side data (typically stored in a std::vector<T>)

and the corresponding device-side memory (represented by a T* pointer) are bound together

within a unified structure. This design enforces a clear and consistent logical relationship

between the two: they are not merely linked by convention, but physically encapsulated,

promoting conceptual integrity and reducing opportunities for error.

44

Chapter 6

CONCLUSION

6.1 Summary

The primary objective of this thesis was to design abstractions specifically targeted to

Graphitti that simplify GPU development and enhance programmability. To achieve this,

the thesis reviews existing abstractions and categorizes them to analyze how different types

of abstractions address various aspects of heterogeneous application development. It uses

insights from that review to present the design and implementation of DeviceVector, a

lightweight abstraction that unifies host and device memory management in Graphitti.

DeviceVector enhances programmability by reducing code duplication and abstracting

CUDA boilerplate through an interface that closely mirrors a standard C++ container.

Specifically designed to address the programmability challenges in Graphitti’s GPU-based

simulation, DeviceVector lowers development complexity, improves maintainability, and

increases developer productivity. It achieves these benefits with minimal disruption to

the existing codebase and a low risk of integration errors. Importantly, the abstraction

preserves fine-grained control, making it well-suited for performance-critical applications

such as large-scale simulations.

The integration of DeviceVector was quantitatively evaluated using standard software

engineering metrics, including code reduction and boilerplate ratio. This work also provides

a qualitative evaluation of DeviceVector in terms of ease of integration, usability, and

other criteria by comparing its characteristics with those of existing abstractions. These

comparisons offer insights into the trade-offs and limitations of current solutions and inform

future design directions.

This work lays out the design approach and choices behind DeviceVector, which is de-

signed to improve the programmability of Graphitti so that it can be easily extended by

researchers to implement additional simulation domains. Rather than offering yet another

45

general-purpose library, the intention is to provide a starting point or offer insights and

guidance for designing targeted, maintainable abstractions.

6.2 Future Work

In the context of future research, several avenues merit further exploration to enhance the

programmability of GPU development within heterogeneous applications.

Foremost, a key direction for future work is to integrate DeviceVector with other subsys-

tems within Graphitti (e.g., Edges). Given the documentation and this thesis as a reference,

this integration should now require relatively minimal effort. One promising enhancement is

the incorporation of RAII principles into the DeviceVector class—specifically, by relocat-

ing the freeDeviceMemory() operation into the class destructor. Since GPU-resident data

is meaningful only when its corresponding host container exists (as host-side retrieval is es-

sential for storage, analysis, and further computation), binding the device memory lifecycle

to the host object aligns naturally with RAII. This would relieve developers of the man-

ual burden of memory deallocation and reduce the likelihood of memory leaks. However,

such a modification should be implemented cautiously and only after thoroughly evaluating

Graphitti’s data flow and memory management requirements.

Another important direction involves introducing function-level abstractions to further

reduce logic duplication and enhance maintainability. The computational logic in many

Graphitti components remains largely consistent across host and device contexts, with

the primary differences lying in parameter handling. By leveraging unified templates and

CUDA’s host device function specifiers, it becomes feasible to consolidate these

logic paths. This concept is discussed in Section A.2. Although this approach has not

yet been integrated into Graphitti due to time constraints, it holds significant potential for

future improvements.

Furthermore, while DeviceVector currently supports only primitive data types, extend-

ing it to support user-defined object types could enhance its generality and applicability.

Implementing such support would require a careful study of relevant use cases, the develop-

ment of clear design guidelines, and rigorous testing to ensure that the abstraction remains

effective without introducing unnecessary complexity. A conceptual design for integrating

46

DeviceVector with object types is presented in section A.1, demonstrating the feasibility

of this idea within the context of Graphitti.

Finally, while this work primarily focuses on memory management, other dimensions of

GPU programmability could similarly benefit from lightweight, modular solutions. Explor-

ing these aspects in future work may lead to more holistic and generalizable improvements

across heterogeneous computing. The central idea behind this thesis is that, through itera-

tive enhancements to Graphitti and the insights gained along the way, it will be possible to

identify recurring challenges and derive design patterns that go beyond abstraction alone.

Just as traditional design patterns have long provided reusable solutions to recurring prob-

lems in software engineering, the patterns emerging from this work can offer structured

guidance for addressing common issues in heterogeneous systems—including, but not lim-

ited to, memory management. These patterns are intended to guide the development of

maintainable and well-structured code that effectively addresses the specific challenges of

an application.

Overall, this work lays the foundation not only for future research and development of

application-specific GPU abstractions, but also for the formulation of generalizable design

patterns that can consistently address recurring challenges in heterogeneous applications.

47

BIBLIOGRAPHY

[1] H. Markram and et al., “Reconstruction And Simulation Of Neocortical Microcir-

cuitry,” Cell, vol. 163, no. 2, pp. 456–492, Oct. 2015. doi: 10.1016/j.cell.2015.

09.029.

[2] J. A. Anderson, J. Glaser, and S. C. Glotzer, “HOOMD-blue: A Python Package

For High-performance Molecular Dynamics And Hard Particle Monte Carlo Simula-

tions,” Computational Materials Science, vol. 173, p. 109 363, 2020. doi: 10.1016/j.

commatsci.2019.109363.

[3] J. Leskovec and R. Sosič, “SNAP: A General-Purpose Network Analysis And Graph-

Mining Library,” ACM Trans. Intell. Syst. Technol., vol. 8, no. 1, Jul. 2016, issn:

2157-6904. doi: 10.1145/2898361.

[4] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips,

“GPU Computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879–899, 2008. doi:

10.1109/JPROC.2008.917757.

[5] S. Mittal and J. S. Vetter, “A Survey Of Methods For Analyzing And Improving GPU

Energy Efficiency,” vol. 47, no. 2, Aug. 2014, issn: 0360-0300. doi: 10.1145/2636342.

[6] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable Parallel Programming

With CUDA,” Queue, vol. 6, pp. 40–53, Mar. 2008. doi: 10.1145/1401132.1401152.

[7] J. Stone, D. Hardy, I. Ufimtsev, and K. Schulten, “GPU-Accelerated Molecular Mod-

eling Coming Of Age,” Journal of molecular graphics modelling, vol. 29, pp. 116–25,

Sep. 2010. doi: 10.1016/j.jmgm.2010.06.010.

[8] D. B. Kirk and W.-m. W. Hwu, Programming Massively Parallel Processors: A Hands-

on Approach, 1st. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2010,

isbn: 0123814723.

https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1016/j.commatsci.2019.109363
https://doi.org/10.1016/j.commatsci.2019.109363
https://doi.org/10.1145/2898361
https://doi.org/10.1109/JPROC.2008.917757
https://doi.org/10.1145/2636342
https://doi.org/10.1145/1401132.1401152
https://doi.org/10.1016/j.jmgm.2010.06.010

48

[9] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.-m. W.

Hwu, “Optimization Principles And Application Performance Evaluation Of A Multi-

threaded GPU Using CUDA,” PPoPP ’08, pp. 73–82, 2008. doi: 10.1145/1345206.

1345220.

[10] G. Juckeland and S. Chandrasekaran, OpenACC For Programmers: Concepts And

Strategies. Sep. 2017, isbn: 978-0134694283.

[11] A. Alexandrescu, Modern C++ Design: Generic Programming and Design Patterns

Applied. Addison-Wesley, 2001.

[12] A. A. Rudrawar, “Evaluating Impact Of GPU API Evolution On Software Develop-

ment And Application Performance.,” M.S. thesis, UW Bothell, 2022.

[13] V. J. Salvatore, “Demonstrating Software Reusability: Simulating Emergency Re-

sponse Network Agility With A Graph-Based Simulator,” M.S. thesis, UW Bothell,

2021.

[14] S. Singh, “Graph Analysis For Simulated Neural Networks With STDP.,” M.S. thesis,

UW Bothell, 2021.

[15] A. Marowka, “On The Performance Portability Of OpenACC, OpenMP, Kokkos And

RAJA,” in International Conference On High Performance Computing In Asia-Pacific

Region, ser. HPCAsia ’22, Virtual Event, Japan: Association for Computing Machin-

ery, 2022, pp. 103–114, isbn: 9781450384988. doi: 10.1145/3492805.3492806.

[16] S. Wienke, P. Springer, C. Terboven, and D. an Mey, “OpenACC — First Experiences

With Real-World Applications,” in Euro-Par 2012 Parallel Processing, C. Kaklama-

nis, T. Papatheodorou, and P. G. Spirakis, Eds., Berlin, Heidelberg: Springer Berlin

Heidelberg, 2012, pp. 859–870, isbn: 978-3-642-32820-6.

[17] M. Steuwer, P. Kegel, and S. Gorlatch, SkelCL - A Portable Skeleton Library For

High-Level GPU Programming, Jun. 2011. doi: 10.1109/IPDPS.2011.269.

[18] S. Ernsting and H. Kuchen, “Algorithmic Skeletons For Multi-core, Multi-GPU Sys-

tems And Clusters,” International Journal of High Performance Computing and Net-

working, vol. 7, pp. 129–138, Apr. 2012. doi: 10.1504/IJHPCN.2012.046370.

https://doi.org/10.1145/1345206.1345220
https://doi.org/10.1145/1345206.1345220
https://doi.org/10.1145/3492805.3492806
https://doi.org/10.1109/IPDPS.2011.269
https://doi.org/10.1504/IJHPCN.2012.046370

49

[19] H. Carter Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling Manycore

Performance Portability Through Polymorphic Memory Access Patterns,” Journal of

Parallel and Distributed Computing, vol. 74, no. 12, pp. 3202–3216, 2014, Domain-

Specific Languages and High-Level Frameworks for High-Performance Computing,

issn: 0743-7315. doi: https://doi.org/10.1016/j.jpdc.2014.07.003.

[20] R. D. Hornung and J. A. Keasler, “The RAJA Portability Layer: Overview And

Status,” Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States),

Tech. Rep., Sep. 2014. doi: 10.2172/1169830.

[21] C. R. Trott, D. Lebrun-Grandié, D. Arndt, et al., “Kokkos 3: Programming Model

Extensions For The Exascale Era,” IEEE Transactions on Parallel and Distributed

Systems, vol. 33, no. 4, pp. 805–817, 2022. doi: 10.1109/TPDS.2021.3097283.

[22] N. Bell and J. Hoberock, “Chapter 26 - Thrust: A Productivity-Oriented Library For

CUDA,” in GPU Computing Gems Jade Edition, ser. Applications of GPU Computing

Series, W.-m. W. Hwu, Ed., Boston: Morgan Kaufmann, 2012, pp. 359–371, isbn: 978-

0-12-385963-1. doi: https://doi.org/10.1016/B978-0-12-385963-1.00026-5.

[23] J. Reinders, B. Ashbaugh, J. Brodman, M. Kinsner, J. Pennycook, and X. Tian, Data

Parallel C++: Mastering DPC++ For Programming Of Heterogeneous Systems Using

C++ And SYCL. Jan. 2021, isbn: 978-1-4842-5573-5. doi: 10.1007/978-1-4842-

5574-2.

[24] E. Zenker, B. Worpitz, R. Widera, et al., “Alpaka - An Abstraction Library For

Parallel Kernel Acceleration,” Feb. 2016. doi: 10.48550/arXiv.1602.08477.

[25] M. Goli and H. González-Vélez, “Heterogeneous Algorithmic Skeletons For Fast Flow

With Seamless Coordination Over Hybrid Architectures,” in 2013 21st Euromicro

International Conference On Parallel, Distributed, And Network-Based Processing,

2013, pp. 148–156. doi: 10.1109/PDP.2013.29.

[26] B. Peccerillo and S. Bartolini, “PHAST - A Portable High-Level Modern C++ Pro-

gramming Library For GPUs And Multi-Cores,” IEEE Transactions on Parallel and

https://doi.org/https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.2172/1169830
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/https://doi.org/10.1016/B978-0-12-385963-1.00026-5
https://doi.org/10.1007/978-1-4842-5574-2
https://doi.org/10.1007/978-1-4842-5574-2
https://doi.org/10.48550/arXiv.1602.08477
https://doi.org/10.1109/PDP.2013.29

50

Distributed Systems, vol. 30, no. 1, pp. 174–189, 2019. doi: 10.1109/TPDS.2018.

2855182.

[27] M. Kuricheti, “Using Modern C To Improve CUDA Programs,” University of Cali-

fornia, Davis, Master’s thesis, 2024, Discusses modern C++ abstractions (iterators,

buffer views, bounds checking) in CUDA kernel code.

[28] G. E. G. David J. Skudra, “C++ Resource Intelligent Compilation For GPU Enabled

Applications,” NASA STI Program, NASA/TM–2018–219897, 2018.

[29] J. M. Jordan and M. Stiber, “Graph-based Modeling And Simulation Of Emergency

Services Communication Systems,” in 2024 32nd International Conference On Model-

ing, Analysis And Simulation Of Computer And Telecommunication Systems (MAS-

COTS), 2024, pp. 1–4. doi: 10.1109/MASCOTS64422.2024.10786343.

[30] OpenAI, ChatGPT (May - June 2025 Version), Accessed: 2025-05 and 2025-06, 2025.

https://doi.org/10.1109/TPDS.2018.2855182
https://doi.org/10.1109/TPDS.2018.2855182
https://doi.org/10.1109/MASCOTS64422.2024.10786343

51

Appendix A

OTHER DESIGN INSIGHTS

A.1 GPU-Safe Views for Integration of DeviceVector with RecordableVector
and EventBuffer (Object Types)

Figure A.1: Integration design of DeviceVector with RecordableVector and EventBuffer.

This presents a conceptual design for how DeviceVector integrates with the existing

RecordableVector and EventBuffer, which are used to record data in Graphitti.

The key idea behind supporting complex objects is the introduction of a device view —

a plain-old-data (POD) struct that mirrors the layout of the original object using only GPU-

compatible types. This device view explicitly holds raw device pointers to data members

52

and excludes any host-only constructs, such as virtual functions (which introduce vtables),

STL containers like std::vector, or even abstractions like DeviceVector itself.

Because not all host objects are trivially transferrable to the device, the responsibility

of defining a suitable device view lies with the user. As shown in A.1, to support GPU-safe

integration between DeviceVector and EventBuffer—a complex object that internally

uses host-only types—we introduce a EventBufferDeviceView. This view inherits from

RecordableVectorDeviceView and holds device pointers to the data required on the GPU.

The original EventBuffer instance maintains a reference to its device view, enabling kernels

to access GPU-allocated data safely.

While this design allows safe GPU usage, it does introduce limitations. First, data

duplication is present since both dataSeries (inherited from RecordableVector) and the

device view (from d ptr) is referencing the same memory. Second, this approach does not

fundamentally solve the problem of making DeviceVector compatible with object-oriented

constructs like EventBuffer; rather, it shifts the burden of compatibility to a user-defined

translation layer.

Despite these issues, this design serves as a reference point for what approaches may not

scale or generalize. By identifying the pain points in abstraction, we can better inform future

iterations that strive for a more balanced trade-off between usability and performance.

A.2 Function Abstractions for Graphitti

The core idea behind this abstraction is that the functional logic required on both the host

and device sides is mostly similar, with differences primarily in parameter handling and ex-

ecution context. CUDA provides execution space specifiers such as device and host

to distinguish where a function is executed and from where it can be called. Specifically,

device marks a function that is executed on the device and callable only from device

code, while host marks functions executed and callable solely from the host. When both

specifiers are used together, the function is compiled for both host and device execution,

enabling shared logic across execution spaces. This construct has been widely adopted and

represents a well-established technique in CUDA development for unifying host and device

implementations while minimizing code duplication.

53

Figure A.2: Example of usage of host and device qualifier and iterator conditional compi-

lation reused from [28]

Figure A.3: Example of kernel and host method passing necessary arguments to same host-

device qualified code, reused from [28]

54

Building on this idea, combining execution space specifiers with function templates al-

lows flexible parameter passing while maintaining a unified implementation for both host

and device contexts. An illustrative example of such a function is provided below, demon-

strating how templated functions can be annotated for dual execution environments.

Listing A.1: Example showing current Methods in Graphitti

//host-function

bool isSpikeQueue(BGSIZE iEdg) {

...

}

//device-function

__device__ isSpikingSynapsesSpikeQueueDevice(allEdgesDevice, BGSIZE iEdg) {

....

}

Listing A.2: Example showing unified logic

template<typename T>

static __device__ __host__ bool isSpikeQueue(T* props, BGSIZE iEdg) {

uint32_t& delayQueue = props->delayQueue_[iEdg];

int& delayIdx = props->delayIndex_[iEdg];

....

}

isSpikeQueue(this, iEdg); //host-call

isSpikeQueue(edges, iEdg); //device-call

Although this approach has not yet been integrated into Graphitti as part of this project

due to time constraints, it is presented here as a potential future enhancement. If adopted,

this technique could further reduce code duplication and enhance maintainability by en-

abling unified host-device implementations through templated, execution-aware functions.

	List of Figures
	List of Tables
	List of Code Sections
	Glossary
	Introduction
	Research Motivation
	Overview

	Background: Heterogeneous Development of Graphitti
	Host and Device Separation for Entity: Vertices

	Existing Abstractions for Heterogeneous Computing
	Methodology
	Abstraction Categorization
	Device Vector

	Results
	Quantative Evaluation
	Qualitative Evaluation

	Conclusion
	Summary
	Future Work

	Other Design Insights
	GPU-Safe Views for Integration of DeviceVector with RecordableVector and EventBuffer (Object Types)
	Function Abstractions for Graphitti

