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Abstract. As forest fire activity increases worldwide, it is important to track changing patterns of burn
severity (i.e., degree of fire-caused ecological change). Satellite data provide critical information across space
and time, yet how satellite indices relate to individual measures of burn severity on the ground (e.g., tree mor-
tality or surface charring) and how these relationships change across biophysical gradients remain unclear. To
address these knowledge gaps, we used Bayesian hierarchical zero-one-inflated beta (ZOIB) regression mod-
els with nearly 600 plots of individual field measures of burn severity distributed across the U.S. Rocky Moun-
tains. We asked the following: How do three commonly used satellite indices of burn severity relate to
individual field measures of canopy burn severity and forest-floor burn severity (Q1)? Then, using the highest
ranked satellite index, how is reliability affected by biophysical gradients that can be captured in accessible
geospatial data (e.g., latitude, slope) (Q2) and stand-structure data typically available only with field data
(Q3)? The Relative differenced Normalized Burn Ratio (RdNBR) outperformed the differenced Normalized
Burn Ratio (dNBR) and the Relative Burn Ratio (RBR) across canopy and forest-floor measures of burn sever-
ity, but differences among index performances were minor. Overall, indices performed better for field mea-
sures of canopy burn severity than for forest-floor measures. The relationship between RdNBR and individual
field measures of burn severity changed across several biophysical gradients. For example, the same value of
RdNBR corresponded to different field levels of burn severity depending on latitude, pre-fire forest structure,
and pre-fire beetle outbreaks—and effects of biophysical gradients were often different for canopy vs. forest-
floor measures of burn severity. We show that estimating field measures of burn severity using satellite indices
can be improved by including biophysical information, but if variables that are difficult to obtain without field
data (e.g., pre-fire beetle outbreak severity) are lacking, we suggest caution in interpreting satellite indices of
burn severity across gradients of pre-fire biophysical conditions. Finally, using an example fire, we illustrate
contrasting maps of burn severity that arise from differences in the relationship between individual field mea-
sures of burn severity and RdNBR after accounting for error in those relationships.
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INTRODUCTION

Fire is a natural disturbance that is integral to
the structure and function of many forests

throughout the world (Attiwill 1994), with tens
of millions of hectares (ha) burning each year. A
warming climate is substantially increasing
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wildfire activity (Moritz et al. 2012, Flannigan
et al. 2013, Abatzoglou and Williams 2016,
Westerling 2016), which will likely have pro-
found ecological consequences for fire-prone for-
est ecosystems (Millar and Stephenson 2015,
Johnstone et al. 2016). As such, accurately detect-
ing components of fire regimes (i.e., the fre-
quency, severity, and size of wildfires; Agee
1996) and how they may be changing with cli-
mate warming is a pressing scientific and societal
need.

Widespread availability of satellite data col-
lected since the mid-1980s has allowed for moni-
toring of wildland fires across expansive areas,
bringing “big data” to bear on tracking changing
fire regimes. A key fire regime metric that is
often the focus of fire ecology research is burn
severity (i.e., the degree of short-term ecological
change caused by fire, typically measured by bio-
mass lost or vegetation killed by fire, Keeley
2009, Morgan et al. 2014). Field and satellite
remote sensing data have been used to assess
burn severity since the mid-1990s (White et al.
1996, Patterson and Yool 1998, Lentile et al. 2005,
2006a, b) and have proliferated since the mid-
2000s in the United States with the Monitoring
Trends in Burn Severity program—a multi-year
project supported by the U.S. Forest Service and
Department of Interior, whereby all fires larger
than 400 ha are mapped and cataloged online
(Eidenshink et al. 2007). Researchers can access
and download 30-m resolution images (derived
from Landsat TM satellites) of burn severity for
each fire in the dataset, which currently contains
more than 20,000 individual fires. The value of
such wall-to-wall mapping of burn severity for
nearly all fires that burn each year is indis-
putably high, but like many instances of big data
compilations, it is often hampered by a lack of
on-the-ground field data to calibrate or validate
satellite burn severity indices (Morgan et al.
2014, Kolden et al. 2015).

One key knowledge gap in tracking changes in
fire regimes over space and time is understand-
ing how satellite indices relate to individual com-
ponents of burn severity (i.e., fire effects) on the
ground (Morgan et al. 2014, Kolden et al. 2015,
Smith et al. 2016). Two widely used indices of
burn severity are derived from the Normalized
Burn Ratio (NBR; Key and Benson 2005), which
relates to chlorophyll content in plants, moisture,

and surface char/ash: the differenced Normalized
Burn Ratio (dNBR; Key and Benson 2005) and
the Relative differenced Normalized Burn Ratio
(RdNBR); the latter removes bias of pre-fire vege-
tation cover among locations and is therefore
best suited for regional studies across different
forest types (Miller and Thode 2007, Dillon et al.
2011, Cansler and McKenzie 2014). A mathemati-
cally simpler Relative Burn Ratio (RBR) has also
been proposed and has shown promise in out-
performing dNBR and RdNBR (Parks et al.
2014a). In short, by comparing differences
between the near- and shortwave-infrared reflec-
tance values (wavelengths of 0.77–0.90 lm and
2.09–2.35 lm, respectively) in pre- and post-fire
Landsat satellite images, each of these NBR-
derived indices generates a continuous index of
burn severity across an entire burned landscape;
greater values equate to greater change from pre-
to post-fire and, therefore, greater burn severity.
The relationship between field measures of burn
severity and satellite measures of burn severity
has been tested in many Northern Hemisphere
forest ecosystems (Cocke et al. 2005, De Santis
and Chuvieco 2007, Lentile et al. 2007, Miller
and Thode 2007, Smith et al. 2007, French et al.
2008, Cansler and McKenzie 2012, Parks et al.
2014b). However, most existing field datasets
used to calibrate and validate satellite indices of
burn severity are composed of semiquantitative
(ordinal) field data on burn severity (e.g., the
Composite Burn Index, CBI; Key and Benson
2005), which are then typically converted to a
single set of categorical burn severity classes for
analysis (Cansler and McKenzie 2012); few stud-
ies have tested satellite indices against individual
continuous field measures (Miller et al. 2009,
Whitman et al. 2018). While instructive for quick
field assessments that inform broad categories of
burn severity, the typical use of CBI relies on user
subjectivity and collapses many individually dis-
tinct metrics of burn severity into one value, thus
inhibiting the ability of researchers to map indi-
vidual components of burn severity across space
and time (Morgan et al. 2014). Precise quantita-
tive relationships between widely used satellite
indices and field measures of individual compo-
nents of burn severity (e.g., tree mortality or for-
est floor charring) have heretofore not been
rigorously tested across wide swaths of fire-
prone forests (Morgan et al. 2014, Kolden et al.
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2015; but see Miller et al. 2009 for an example
from California).

A second key knowledge gap that limits
insights about how disturbance regimes may be
changing is understanding whether the relation-
ship between satellite and field measures of burn
severity varies across gradients of geography,
topography, and stand structure. Recent work
has tested the effect of topography, climate,
weather, and vegetation as drivers of burn sever-
ity (Birch et al. 2015, Kane et al. 2015, Harvey
et al. 2016b), but how these variables affect the
performance of satellite indices of burn severity
remains unclear. For example, if the same level of
satellite burn severity (e.g., RdNBR = 500)
equates to different levels of fire-caused tree mor-
tality depending on the latitude of the fire, regio-
nal assessments of trends in burn severity (Dillon
et al. 2011, Harvey et al. 2016b, Parks et al.
2018a) could be challenging if they do not
account for latitudinal effects. The effect on satel-
lite indices of burn severity from more direct sun
angles at lower latitudes has been discussed in
the literature (French et al. 2008, Parks et al.
2014a), but has not been systematically tested or
quantified across wide swaths of latitude. In
addition, whether the relationship between satel-
lite and field measures of burn severity is
consistent across gradients of past (pre-fire) dis-
turbances such as insect outbreaks is unknown
(see McCarley et al. 2017 for an example compar-
ing spectral measures of burn severity to LiDAR
measures of burn severity), yet remote sensing is
a valuable tool for measuring burn severity in
beetle-impacted forests (Meigs et al. 2016). With-
out knowing how the reliability of satellite burn
severity indices may be affected by gradients in
geography, topography, and stand structure,
insights into how disturbance regimes are chang-
ing are constrained in important ways.

We address the above research gaps by asking
three research questions that compare satellite
burn severity indices to individual field measures
of burn severity across key ecological gradients in
a large, fire-prone, temperate forested region.
First, we asked which of three commonly used
satellite indices (dNBR, RdNBR, or RBR) best cor-
responds directly to individual field measures of
burn severity in forests spanning the U.S. Rocky
Mountains (Q1). We expected that all three NBR-
derived indices would perform similarly, but that

RBR would overall be the best performing index,
based on recent work in nearby ecoregions (Parks
et al. 2014a). We also expected that indices would
perform best for canopy measures of burn sever-
ity and worst for forest-floor measures of burn
severity—given that the satellite has the most
unobstructed view of the forest canopy. Second,
using the highest ranked satellite index from Q1,
we asked whether geospatial data that are typi-
cally readily available (e.g., latitude, elevation,
slope, aspect, pre-fire NBR) could improve the
correspondence between field and satellite mea-
sures of burn severity (Q2). We expected that
inclusion of such data would lead to moderate
improvements in model performance between
field and satellite measures. Third, we asked how
the best available models relating satellite to field
indices of burn severity are affected by forest
stand-structure variables that are not easily
attainable without field data (e.g., basal area,
pre-fire bark beetle outbreak severity; Q3). We
expected that pre-fire stand structure would not
affect the performance of relative indices (e.g.,
RBR and RdNBR) of burn severity (Miller and
Thode 2007), but that pre-fire beetle outbreak
severity could affect the performance of burn
severity indices, based on insights using LiDAR
(McCarley et al. 2017). Finally, we used an exam-
ple fire from the geographic center of our study
area to demonstrate how different spatial pat-
terns emerge for individual field measures of
burn severity and how incorporating the error in
these estimates affects the observed spatial pat-
terns of burn severity across a burned landscape.

METHODS

Study area
The U.S. Rocky Mountains encompasses EPA

level III ecoregions 15, 16, 17, 18, 19, 21, and 41,
including parts of New Mexico, Utah, Colorado,
Wyoming, Idaho, Montana, and Washington
(Fig. 1). Forests in the region are conifer-domi-
nated and vary compositionally along gradients
of elevation and latitude (Peet 2000, Baker 2009).
Forest elevations range from 1500 to 4300 m and
generally decrease toward northern latitudes;
that is, forests are at higher elevations at lower
latitudes. Subalpine (high-elevation) forests are
generally characterized by infrequent, high-
severity wildfires, and are composed primarily
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of thin-barked conifers that regenerate via seed
following fire (e.g., Pinus contorta, Pinus flexilis,
Pinus albicaulis, Picea engelmannii, and Abies lasio-
carpa; Schoennagel et al. 2004, Baker 2009). Mid-
montane (mid-elevation) forests are generally
characterized by a mixed severity fire regime
and are composed of the aforementioned thin-
barked species, as well as thick-barked species
that can also survive lower intensity fires (e.g.,
Pinus ponderosa, Pseudotsuga menziesii, Pinus mon-
ticola, and Larix occidentalis; Schoennagel et al.
2004, Baker 2009). The re-sprouting angiosperm
Populus tremuloides rarely survives fire (but
commonly colonizes burned areas) and inhabits
mid-montane to lower subalpine forests. Low-
montane woodlands (~500–1500 m elevation) are
typified by a high-frequency but low-severity fire
regime and are dominated primarily by sparse
stands of P. ponderosa, P. menziesii, and Juniperus
scopulorum (Schoennagel et al. 2004, Baker 2009).

Field measures of burn severity
We used existing field data from 496 plots in

burned and unburned forest stands in 13 differ-
ent fires that burned between 2008 and 2013 in
representative portions of the study region (Har-
vey et al. 2013, 2014a, b, Andrus et al. 2016;
Fig. 1; Appendix S1: Table S1). Field data cov-
ered a wide range of topographic conditions,
pre-fire forest stand structure, and tree species
composition that are broadly representative of
the dominant forests in the Rocky Mountains
(Table 1). Data from each field plot (30 m diame-
ter circle; Harvey et al. 2013, 2014a, b; or
20 9 20 m2; Andrus et al. 2016) included five
individual quantitatively assessed measures of
burn severity. These included three measures of
canopy burn severity: percentage of tree mortal-
ity by basal area, percentage of tree mortality by
number of trees, and percentage of bole circum-
ference that was scorched; and two measures of
forest-floor burn severity: char height as percent-
age of tree height, and percentage of charred sur-
face cover. Char height, although measured on
canopy trees, was considered a forest-floor burn
severity measure as it corresponds to surface fire
intensity and therefore burn severity on the for-
est floor. Bole scorch, however, was considered a
canopy burn severity measure as it is a strong
predictor of tree mortality. Complete descriptions
of field methods are published elsewhere (Har-
vey et al. 2013, 2014a, b, Andrus et al. 2016);
however, for completeness we also explain these
field measures in detail in Table 2.

Covariates of geography, topography, and pre-fire
stand structure
Field data on topographic setting and pre-fire

forest structure were collected from each of the
burned and unburned plots, following existing
protocols (Harvey et al. 2013, 2014a, b, Andrus
et al. 2016). In short, we recorded the elevation
(m), slope (deg), aspect (azimuth), and coordi-
nates (lat/lon, in decimal degrees) from plot cen-
ter. Slope, aspect, and latitude were then used to
calculate solar heat load (MJ�cm�1�yr�1) follow-
ing published equations (McCune and Keon
2002). For each tree reaching a height of 1.4 m
(and greater than 4 cm diameter; Andrus et al.
2016) in each plot, we recorded the following
characteristics: live/dead (after the fire), species,
diameter at breast height (dbh, to the nearest

Fig. 1. Study area and sample fire locations (years in
parentheses) for the 593 plots included in this study.
The U.S. Rocky Mountain ecoregion is outlined in light
blue and shaded in gray.
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0.5 cm), and if the tree was alive or dead at the
time of fire (based on charring characteristics).
We also recorded whether a tree had been killed
by bark beetles prior to fire using established
methods (Harvey et al. 2013). From the individ-
ual tree data, we calculated the following
stand-structure variables for each plot: basal area
(m2/ha), stand density (stems/ha) of all trees,
stand density (stems/ha) for trees >10 cm dbh,
quadratic mean diameter (QMD, cm; Curtis and
Marshall 2000) for all trees, QMD (cm) for trees
that were alive at the time of fire, and percentage
of basal area of the stand that was killed by bark
beetles prior to fire.

An additional 97 unburned forest stands were
added to the existing field dataset using a

combination of burn severity and perimeter
maps, post-fire color aerial imagery (1-m resolu-
tion from the National Agricultural Imagery Pro-
gram; Aerial Photography Field Office [AFPO]
2016), and vegetation data (LandFire Environ-
mental Site Potential; Rollins 2009). These plots
were located within a 100-m external buffer from
the burn perimeter and were visually assessed
for any evidence of disturbance. In the unburned
plots, we visually estimated canopy mortality
from bark beetle outbreaks to the nearest 10%
using 1-m resolution color aerial imagery; pres-
ence of bark beetle outbreaks was corroborated
with U.S. Forest Service Aerial Detection Surveys
(http://www.fs.fed.us/foresthealth/aviation/aerial
survey.shtml).

Table 1. Descriptive statistics of physical setting, pre-fire stand structure, and pre-fire tree species composition
from the 593† plots used to calibrate and validate RdNBR.

Variable Min–max Mean Median

Physical setting
Latitude (decimal deg.) 37.43–48.22 42.53 43.53
Longitude (decimal deg.) �115.03 to �106.79 �110.12 �109.89
Elevation (m) 1735–3659 2607 2603
Slope (deg.) 1–62 19 17
Heat load (MJ�cm�2�yr�1)‡ 0.198–1.104 0.767 0.778
Pre-fire NBR �0.453 to 0.838 0.376 0.379

Pre-fire stand structure
Basal area (m2/ha) 12.9–108.2 41.5 37.7
Stand density (stems/ha) 141–5829 1506 1358
Large trees only (>10 cm dbh) 141–2122 806 850

Quadratic mean diameter, all trees (cm) 8.6–43.1 20.1 18.5
Quadratic mean diameter, trees live at fire (cm) 6.6–48.6 16.2 14.9
Maximum tree height (m) 10.0–36.0 23.8 23.4
Beetle-killed basal area (percentage of BA in stand) 0.0–99.2 35.7 30.0

Pre-fire stand composition (percentage of tree BA)
White fir (Abies concolor) 0 to <1 <1 0
Grand fir (Abies grandis) 0–23 <1 0
Subalpine fir (Abies lasiocarpa) 0–88 13 3
Rocky Mountain juniper (Juniperus scopulorum) 0–33 <1 0
Engelmann spruce (Picea engelmannii) 0–100 24 0
Colorado blue spruce (Picea pungens) 0–74 <1 0
Whitebark pine (Pinus albicaulis) 0–72 2 0
Lodgepole pine (Pinus contorta) 0–100 35 4
Limber pine (Pinus flexilis) 0–72 2 0
Ponderosa pine (Pinus ponderosa) 0–75 <1 0
Pinus sp. (unk. beyond genus) 0–28 <1 0
Quaking aspen (Populus tremuloides) 0–1 <1 0
Douglas-fir (Pseudotsuga menziesii) 0–100 21 0
Salix sp. (unk. beyond genus) 0–5 <1 0
Unknown 0–32 1 0

† 496 field plots; 97 aerial photography plots.
‡ Calculated using formulas in McCune and Keon (2002).

 ❖ www.esajournals.org 5 February 2019 ❖ Volume 10(2) ❖ Article e02600

HARVEY ET AL.

http://www.fs.fed.us/foresthealth/aviation/aerialsurvey.shtml
http://www.fs.fed.us/foresthealth/aviation/aerialsurvey.shtml


We summed or averaged all values to the plot
level before analysis. Summary statistics of topo-
graphic and stand-structure variables across our
plots are in Table 1.

Satellite measures of burn severity
We acquired satellite burn severity data (dNBR

and RdNBR extended assessments) and pre- and
1-yr post-fire Landsat imagery at 30-m resolution
for each of the study fires (Fig. 1; Appendix S1:
Table S2) from the Monitoring Trends in Burn
Severity (MTBS) database (Eidenshink et al.
2007; www.mtbs.gov). We then computed RBR
(Parks et al. 2014a) using the pre-fire Landsat
imagery, dNBR, and dNBR offset value included
in the MTBS metadata to ensure all burn severity
data were consistent and computed from the
same base imagery, following methods in Parks
et al. (2014b). For each of our 593 plots, we
extracted the dNBR, RBR, and RdNBR value of
the focal pixel and bilinear interpolated
(weighted average value based on the four near-
est neighbors to focal pixel) value from the burn
severity data using the raster package (Hijmans
et al. 2017) in the statistical software R (R Devel-
opment Core Team 2018). Previous research

suggests that the bilinear interpolation subsam-
pling method performs better than other sub-
sampling methods such as cubic convolution and
nearest neighbor (Cansler and McKenzie 2012).
Preliminary analysis demonstrated that values
extracted from bilinear interpolation for each
plot location performed consistently better than
extracting the value from the focal pixel
(Appendix S1: Figs. S1, S2); therefore, we per-
formed all subsequent analyses on the bilinear
interpolated values. We excluded any points
with missing data in the satellite image caused
by the scanner line correction failure on the
Landsat 7 satellite. Values of burn severity met-
rics ranged from unburned with vegetation
growth (dNBR: �165, RdNBR: �370, RBR: �148)
to very high burn severity (dNBR: 1040, RdNBR:
2079, RBR: 654; Table 2).

Data analysis
Each of our research questions required a sta-

tistical model to predict the proportion of each
burn severity field measure based on satellite
burn severity metrics and other possible biophys-
ical covariates. These proportions of field burn
severity could range from zero (e.g., unburned)

Table 2. Descriptive statistics of satellite and field measures of burn severity from the 593† plots used in models.

Burn severity metric Description Min–max Mean Median

Satellite measures
dNBR (index) Differenced Normalized Burn Ratio (Key and

Benson 2005)
�165 to 1040 365 342

RdNBR (index) Relative differenced Normalized Burn Ratio
(Miller and Thode 2007)

�370 to 2079 609 627

RBR (index Relative Burn Ratio (Parks et al. 2014a) �148 to 654 262 264
Field measures: canopy severity
Basal area killed by fire (%) The percentage of tree basal area per plot that

was alive at the time of fire and killed by the fire
0–100 66 100

Trees killed by fire (%) The percentage of trees per plot that were alive
at the time of fire and killed by the fire

0–100 67 100

Bole scorching (percentage
of circumference)

Average percent of tree bole circumference that
was charred from randomly selected dominant
canopy trees (20/plot) that were alive at the
time of fire. This value was the maximum
percentage at any height on the bole

0–100 67 89

Field measures: Forest-floor severity
Char height (percentage of
tree height)

Average percent of total tree height that was
charred from randomly selected dominant
canopy trees (20/plot) that were alive at the
time of fire

0–100 36 27

Charred surface cover (%) Average percent of charred ground cover in
plots, taken from 480 to 500 points >10 cm
apart along the main plot axis (N-S, E-W)

0–100 36 27

† 496 field plots; 97 aerial photography plots.
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to one (e.g., completely burned). Beta regression,
in which a logit link is coupled with a beta distri-
bution observation model (Ferrari and Cribari-
Neto 2004), can model proportions between zero
and one, but cannot account for the zeros or ones
themselves. Therefore, we fit zero/one inflated
beta (ZOIB) hierarchical regression models
(Ospina and Ferrari 2012, Liu and Kong 2015),
which allow for zeros, ones, and continuous pro-
portions between these bounds.

Following the notation of Liu and Kong
(2015), ZOIB models assume that the response
data y (here, a proportion value for each burn
severity metric, ranging from zero to one) for
observation i follow a piecewise distribution
such that

f ðyiÞ ¼
pi if yi ¼ 0;
ð1� piÞqi if yi ¼ 1;
ð1� piÞð1� qiÞBetaðai; biÞ if yi 2 ð0; 1Þ;

8<
:

where pi represents the probability Pr(yi = 0), qi
represents the conditional probability Prðyi
¼ 1jyi 6¼ 0Þ, and ai and bi represent the beta distri-
bution shape parameters for yi 2 ð0; 1Þ. We can
combine these components to derive the uncon-
ditional estimate of the response E(yi) (Liu and
Kong 2015) as

EðyiÞ ¼ ð1� piÞ qi þ ð1� qiÞlð0;1Þi

� �
.

For datasets in which we did not have any
zeros, we fit a one-inflated beta model, which is
similar to the ZOIB model except it omits pi

EðyiÞ ¼ qi þ ð1� qiÞlð0;1Þi .

Fitting the piecewise distribution requires fit-
ting the following component models in which
we use the superscripts p, q, and r to represent
related data and parameters across the three
models. First, we fit a model to the zeros vs. non-
zeros

ypi �BinomialðpiÞ
pi ¼ logit�1ðap þ apj½i� þ Xp

i b
pÞ

where ypi is a series of zeros and ones with a one
representing that the original data yi = 0. The
symbol Xi represents a vector of predictors and b
a vector of slope coefficients. The parameter a
represents an intercept, and aj[i] represents a fire-
specific intercept (indexed by j) that is allowed to

vary and is constrained by a normal distribution
in logit space (i.e., a “random intercept”)

apj �Normalð0;r2
pÞ.

Second, we fit a model to the ones vs. non-ones
for all cases that were not yi = 0, with yqi repre-
senting a series of ones and zeros with one repre-
senting that the original data yi ¼ 1jyi 6¼ 0

yqi �BinomialðqiÞ
qi ¼ logit�1 aq þ aqj½i� þ Xq

i b
q

� �

aqj �Normalð0;r2
qÞ.

Third, we fit a model to the proportional data
for all cases of yi that were not exactly zero or
one

yri �Betaðai; biÞ
ai ¼ /li
bi ¼ /ð1� liÞ
li ¼ logit�1ðar þ arj½i� þ Xr

ib
rÞ

arj �Normalð0;r2
r Þ

where yri represents a proportional value
between zero and one. We rearranged the beta
distribution so that the two shape parameters
were represented by a dispersion parameter /
(controlling how spread out or dispersed the dis-
tribution will be) and a mean parameter li (Fer-
rari and Cribari-Neto 2004).
We fit the ZOIB models with Stan (Carpenter

et al. 2017) and rstan (Stan Development Team
2018) for R (R Development Core Team 2018).
After standardizing the predictors by subtracting
their means and dividing them by two times
their standard deviations (Gelman 2008), we
placed weakly informative priors of Normal(0, 5)
on the intercepts a, Normal(0, 2) on the slope
parameters b, Half-t(3, 0, 25) on the dispersion
parameter / (i.e., a Student t distribution with
degrees of freedom 3 and scale 25 for values >0),
and Half-t(3, 0, 2) priors on the r parameters. For
each model, we sampled from the posterior with
1000 iterations across four chains and discarded
the first half of each chain as warm-up. We
ensured consistency with chain convergence by
ensuring R̂ (the potential scale reduction factor)
was <1.05 and the minimum effective sample
size neff was >100 for all parameters (Gelman
et al. 2014).
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For Q1, we fit ZOIB models testing the bivari-
ate relationship between the satellite and field
measures of burn severity. For Q2, we added the
main effects of commonly available biophysical
variables and their interactions with each satellite
metric of burn severity. For Q3, we included
stand-specific variables acquired from the field
and their interactions with satellite metrics. For
Q2 and Q3, our main focus of inference was on
the interaction coefficients rather than the main
effects. A positive interaction, for example,
would indicate that as the value of the biophysi-
cal term in the model (e.g., latitude) increased,
the slope between the satellite and field measures
of burn severity became steeper. Since there are
three components to the ZOIB model, there are
three versions of each interaction, which can be
visualized in aggregate by combining the compo-
nent models into their combined expectation E
(yi) at various values of the biophysical variables.
We chose to avoid model selection and conduct
inference on the full statistical models (Gelman
and Rubin 1995). Since we used a Bayesian
approach, and removing a variable would be
equivalent to setting its prior to exactly zero, we
instead used weakly informative priors and
retained all predictors. However, we note that
predictors with effects near or encompassing
zero would make little difference to the predic-
tions if they were omitted (e.g., if they were
unavailable or costly to collect).

We evaluated model fit via the area under
receiver operating curves (AUC) across a
sequence of thresholds. Calculating the AUC
involves dichotomizing the field response pro-
portions into a series of ones and zeros depend-
ing on whether they are above or below a
specific proportion threshold, and then calculat-
ing the probability that the model would cor-
rectly rank a randomly chosen observation now
coded as a one as more burned than a less
burned observation now coded as a zero. We
evaluated AUC at thresholds of 0.050, 0.275,
0.500, 0.725, and 0.950. For simplicity, we per-
formed these calculations on the median poste-
rior predictions instead of across all samples
from the posterior. We initially tried a cross-
validated evaluation of model performance for
Q1, where we successively left out each fire from
model building and predicted the omitted data.
However, we found this made little qualitative

difference to the results since no one fire substan-
tially drove the model. Therefore, we chose to
present the results without cross-validation for
simplicity.
Finally, to visually demonstrate differences in

the relationship between satellite indices and
individual field measures of burn severity, uncer-
tainty in estimates of those relationships, and the
collective effect on interpreting burn severity pat-
terns, we used the best models from Q1 (without
geospatial covariates) and Q2 (with geospatial
covariates) to produce maps of tree mortality
and charred surface cover (and 90% quantile
credible intervals for each estimate) for a fire
nearest the geographic center of our study area.
We did not extrapolate predictions beyond the
range of RdNBR upon which we built a model,
and all RdNBR values less than �500 and greater
than 2500 were excluded from analyses.

RESULTS

Overall, dNBR, RdNBR, and RBR performed
similarly in bivariate comparisons with field
measures of burn severity, but some minor differ-
ences emerged for certain field measures and at
different levels of burn severity in the field
(Fig. 2). Area under receiver operating curves
(AUC) values of satellite correspondence to field
burn severity were generally high and indicated
strong model performance (ranging from ~0.80
to ~0.95) across all satellite and field measures
(Fig. 2a–e). However, model performance was
consistently higher for canopy measures of
burn severity (tree mortality and bole scorch,
Fig. 2a–c) and consistently lower for forest-floor
measures of burn severity (char height and
charred surface cover, Fig. 2d–e). Area under
receiver operating curves (AUC) decreased with
increasing burn severity for all satellite indices
and field measures (Fig. 2a–e; Appendix S1:
Fig. S3); decreases in AUC with increasing burn
severity were most pronounced for forest-floor
measures of burn severity (Fig. 2d, e) and subtler
for canopy measures of burn severity (Fig. 2a–c).
Similarities in performance among satellite
indices were strongest at low levels of burn
severity, whereas performance diverged at
higher burn severity. Where indices diverged at
higher burn severity, RdNBR was most often the
model with the best performance (highest AUC)
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and RBR and dNBR were slightly poorer
(Fig. 2a–e; Appendix S1: Fig. S2). Because
RdNBR was overall the best performing satellite
index, and for simplicity, results hereafter (for
Q2 and Q3) are presented for RdNBR only
(Fig. 2f–j).

Each of the geospatial variables affected the
relationship between field measures of burn
severity and RdNBR, but to varying degrees
(Fig. 3). Latitude and pre-fire NBR had the stron-
gest effect on the relationship between RdNBR
and field measures (Fig. 3f–o). More northerly
latitudes led to a steeper slope between RdNBR
and canopy burn severity (Fig. 3f–h); however,
latitude had the opposite effect on the relation-
ship between RdNBR and forest-floor burn
severity (Fig. 3i, j); that is, the same value of
RdNBR corresponded to greater canopy burn

severity at more northerly latitudes, but to lower
forest-floor burn severity at more northerly lati-
tudes. Higher values of pre-fire NBR consistently
led to a steeper slope between RdNBR and all
field measures of burn severity, meaning that the
same value of RdNBR corresponded to greater
burn severity in the field at higher levels of
pre-fire NBR (Fig. 3k–o). This effect was stron-
gest for bole scorch, char height, and charred sur-
face cover (Fig. 3m–o), weakest for both
measures of tree mortality (Fig. 3k, l) and was
accentuated at mid to high levels of RdNBR.
Topographic variables—heat load index (Fig. 3a–
e) and slope (Fig. 3p–t)—had minor effects on
the relationship between RdNBR and field mea-
sures of burn severity. The most notable differ-
ence was the effect of heat load index, such that
the same value of RdNBR corresponds to lower
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Fig. 2. Bivariate models comparing each field measure of burn severity (5 measures, left to right) to each satel-
lite index of burn severity (solid lines: green = dNBR; orange = RBR; purple = RdNBR). (a–e) Median global
posterior (purple) and 95% credible intervals (shaded) along with fire-specific random-effect median posteriors
shown as gray lines for the RdNBR ZOIB model. Raw data are shown as dots. (f–j) Model performance was eval-
uated by comparing AUC values along the gradient of each field burn severity metric (left, less severe, to right,
more severe, on the x-axis). Higher AUC values correspond to stronger model predictive performance and repre-
sent the probability that the model would correctly rank a randomly chosen observation that is above the thresh-
old as more burned than a less burned observation that is below the threshold. AUC, area under receiver
operating curves; dNBR, differenced normalized burn ratio; RBR, relative burn ratio; RdNBR, relative differ-
enced normalized burn ratio; ZOIB, zero/one inflated beta.
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canopy burn severity (bole scorch and trees
killed by fire, Fig. 3a–c) in areas with higher heat
load index. Standardized model coefficients for
interaction terms of each variable with RdNBR
varied in size, but were generally largest for lati-
tude and pre-fire NBR (Fig. 4).

When complementing RdNBR models of burn
severity with geospatial variables, model
improvement was consistent across nearly all
field measures of burn severity, raising AUC val-
ues by ~0.02 across levels of burn severity
(Fig. 5). The same general pattern as the bivariate
models (Fig. 2) was evident, in that AUC was
generally highest at lower levels of burn severity,
and that models performed better for measures
of canopy burn severity (Fig. 5a–c) than for
forest-floor burn severity (Fig. 5d–e). The highest
improvement was for charred surface cover
(Fig. 5e), in which AUC improved by over 0.1
probability units at high levels of burn severity,

and the lowest improvement was for char height
(Fig. 5d).
Most forest stand-structure variables affected

the relationship between field measures of burn
severity and RdNBR (Fig. 6). The strongest
effects were from pre-fire beetle outbreak sever-
ity (Fig. 6a–e), QMD (Fig. 6f–j), and basal area
(Fig. 6k–o); stand density had weaker effects on
the performance of RdNBR (Fig. 6p–t). In some
cases, the position of the slope representing the
relationship between field measures of burn
severity and RdNBR was shifted; that is, slopes
did not substantively differ, but they were offset.
For example, the effect of QMD on canopy burn
severity was to shift the lines along the x-axis,
such that the same level of RdNBR nearly always
corresponded to greater canopy burn severity in
the field at higher levels of pre-fire QMD
(Fig. 6f–h). In other cases, the actual slopes of the
relationship between field measures of burn
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Fig. 3. Change in relationship between relative differenced normalized burn ratio (RdNBR; x-axis) and field
measures of burn severity (y-axis, different field measures in columns from left to right) across gradients of Heat
Load Index (row 1), latitude (row 2), pre-fire normalized burn ratio (row 3), and slope (row 4). Colored lines rep-
resent modeled relationship at the 5th (yellow), 50th (purple), and 95th (blue) percentiles of the gradient of inter-
est (rows, labels on right y-axis). Solid lines represent posterior medians, and shaded regions represent 90%
credible intervals.
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severity and RdNBR changed across the spec-
trum of stand structure. For example, in areas
with high QMD, charred surface cover was
greater than expected at low levels of RdNBR
and lower than expected at high levels of RdNBR
(Fig. 6j). Pre-fire beetle outbreak severity and
pre-fire basal area had similar effects on the rela-
tionship between RdNBR and canopy burn
severity. In general, greater pre-fire beetle out-
break severity and greater pre-fire basal area
resulted in higher than expected levels of canopy

burn severity at lower RdNBR and in lower than
expected levels of canopy burn severity at higher
RdNBR (Fig. 6a–c, k–m). Standardized model
coefficients for interaction terms of each stand-
structure variable with RdNBR varied in size, the
strongest support for interaction terms was for
pre-fire beetle outbreak severity and basal area
on the relationship between RdNBR and mea-
sures of canopy burn severity (Fig. 7).
Accounting for the shape of the relationship

between RdNBR and individually distinct field
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Fig. 4. Coefficient plots illustrating the effect of geospatial variables on the relationship between relative differ-
enced normalized burn ratio (RdNBR) and field measures of burn severity. Dots represent the medians of the
posteriors, and horizontal lines represent 95% and 50% credible intervals (thin and thick lines). The effects are
per 2 standard deviations for each predictor and in log-odd units (i.e., in logit space). Green represents the effect
of each term on the probability of being not being completely unburned, red/orange represents the effect of each
term on the proportion of severity (between 0 and 1), and blue/purple represents the effect of each term on the
probability of burning at highest severity (if not unburned). Interaction terms are the focus of this analysis: The
stronger the interaction term between each variable and RdNBR, the stronger the effect of that variable on the
relationship between RdNBR and burn severity measured in the field.
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measures of burn severity, error in those relation-
ships, and the effects of geospatial variables in
Q2 produces substantively different maps of
burn severity for a single fire (Fig. 8;
Appendix S1: Fig. S4). When using the median
model predictions, burn severity among individ-
ual components differed qualitatively in their
spatial patterns; in this case, tree mortality
(Fig. 8d) was more severe across the fire than for-
est-floor burn severity (Fig. 8e). Incorporating
modeled observation error between field and
satellite measures of burn severity also demon-
strates wide differences in spatial burn severity
patterns within individual components of burn
severity. Spatial patterns of burn severity differed
widely between the lower and upper bounds of
the 90% credible intervals for both forest-floor
burn severity (Fig. 8b, f) and canopy burn sever-
ity (Fig. 8c, g). Accounting for the effects of
geospatial variables on the relationship between
satellite indices and field measures of burn sever-
ity resulted in pixel-level differences in burn
severity estimates ranging from �20% to +20% of
the predicted values compared to when geospa-
tial covariates were not considered (Fig. 8h–i).

DISCUSSION

Accurately detecting the ecological severity of
forest fires over broad regions is critical to
characterizing, monitoring, and analyzing

disturbance regimes, and it is of paramount
importance in a warmer and more fire-prone cli-
mate as disturbance regimes are changing. By
testing the performance of three commonly used
satellite burn severity indices against individual
field measures of canopy and forest-floor burn
severity across biophysical gradients, our study
makes several important contributions to the
continued use of satellite indices in tracking burn
severity in forests. First, there were minor differ-
ences in performance among NBR-derived
indices, though RdNBR performed better overall
than dNBR or RBR. Second, geographic, topo-
graphic, and pre-fire reflectance information
improved model fit for the best performing index
(RdNBR), and since these geospatial data are
readily and freely available in geographic infor-
mation systems (GIS) format, inclusion of such
information should lead to improved accuracy in
burn severity mapping. Third, the relationship
between satellite and field measures of burn
severity was also affected by stand-structure vari-
ables that are typically only available via detailed
field data. As such, the use of satellite indices
should be cautioned across wide gradients of
stand structure (e.g., tree basal area or average
tree size) and pre-fire disturbances (e.g., bark
beetle outbreaks)—unless accurate data for these
variables are available and used to calibrate satel-
lite burn severity indices. Fourth, the above dif-
ferences in the relationship among satellite
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Fig. 5. Comparison of raw bivariate models (red line) between each field measure of burn severity (5 mea-
sures, left to right) with relative differenced normalized burn ratio (Q1) vs. full models that include geospatial
variables (Q2) that can affect relationships between field and satellite measures of burn severity (blue line).
Model performance was evaluated by comparing area under receiver operating curves (AUC) values along the
gradient of each field burn severity metric (left, less severe, to right, more severe, on the x-axis). Greater AUC val-
ues correspond to stronger model predictive performance.
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indices and individual components of burn
severity in the field, as well as the error in esti-
mating those relationships, can have important
impacts on mapping burn severity. Below, we
expand on each of these points and discuss
future directions that could build from this study.

Overall, we found that of the three satellite
indices of burn severity that we tested, RdNBR
performed best. Differences among RdNBR and
other indices were particularly strong at the
highest levels of burn severity, where perfor-
mance diverged among all three indices. Our
prediction that RBR would be the best perform-
ing index of burn severity was not supported;
however, differences among indices were subtle.
Similar performance among indices likely results
from the fact that all three indices are slightly

different derivatives of the normalized burn ratio
(Key and Benson 2005); that is, they are all start-
ing with the same information from Landsat
bands that measure reflectance in near-infrared
and shortwave-infrared wavelengths. Past com-
parisons between RdNBR and dNBR have also
found minor quantitative differences in perfor-
mance between indices (Miller and Thode 2007,
Cansler and McKenzie 2012), as have compar-
isons that also include RBR (Parks et al. 2014a,
2018b, Whitman et al. 2018). Our findings sup-
port the idea that relative indices (e.g., RdNBR
and RBR) fit better to field data than absolute
indices (e.g., dNBR), as has been reported else-
where (Miller and Thode 2007, Parks et al. 2014a,
Whitman et al. 2018) and that canopy measures
of burn severity are captured more accurately
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Fig. 6. Change in relationship between relative differenced normalized burn ratio (RdNBR; x-axis) and field
measures of burn severity (y-axis, different measures in columns from left to right) across gradients of pre-fire
beetle outbreak severity (row 1), quadratic mean diameter (QMD; row 2), basal area per ha (row 3), and stems
per ha (row 4). Colored lines represent modeled relationship at the 5th (yellow), 50th (red), and 95th (blue) per-
centiles of the gradient of interest (rows, labels on right y-axis). Solid lines represent posterior medians, and
shaded regions represent 90% credible intervals.
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than forest-floor measures (Hudak et al. 2007).
Given the current focus in many regions on
trends in high-severity (i.e., stand-replacing or
canopy-removing) fire (Miller et al. 2012, Harvey
et al. 2016b, Stevens et al. 2017, Parks et al.
2018a), our results suggest that RdNBR may be
the most useful satellite index among the three
we tested, as the biggest differences between per-
formance of RdNBR and other indices were at
the high end of the burn severity gradient
(Fig. 2a–e).

Our finding that RdNBR was affected by
geospatial variables suggests that accuracy in
satellite-based burn severity maps can be
improved by including these variables in models

to improve estimates of individual fire effects
onto burned landscapes. That RdNBR was
affected by these biophysical variables was sur-
prising, as RdNBR was designed to perform con-
sistently across such gradients (Miller and Thode
2007). However, our approach of focusing on the
interaction term in models to directly test the
effect of biophysical variables on the relationship
(rather than testing the effect of biophysical vari-
ables on burn severity sensu; Birch et al. 2015,
Kane et al. 2015, Harvey et al. 2016b) quantifies
effects that have been alluded to elsewhere. For
example, the effect of the more direct sun angle
at lower latitudes on the performance of satellite
burn severity indices has been posited (French
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severity. The legend is otherwise the same as for Fig. 4 except that there is no Pr(0) model since there were not
cases that were completely unburned that had all of these covariates.
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et al. 2008, Parks et al. 2014b), and our study pro-
vides quantitative support for this effect. Our
results demonstrate that at lower latitudes (i.e.,
more direct sun angle) the slope of relationship
between RdNBR and forest-floor burn severity
steepens, possibly because at lower latitudes the
forest floor receives more direct sunlight in gaps
between tree crowns and there is less area within
a pixel that is occupied by shadows cast from
trees. This may be responsible for the corre-
sponding shallowing of the slope in the relation-
ship between RdNBR and canopy measures at
low latitudes, as there is more top-down light
interception by the crowns, whereas at higher
latitudes more light is intercepted throughout
the whole vertical profile of tree crowns and lar-
ger shadows are cast from trees.
Relative indices such as RdNBR were designed

to decrease or eliminate the effect of pre-fire NBR
on the relationship between satellite indices and
field measures of burn severity (Miller and
Thode 2007), but our analyses illustrate residual
effects of pre-fire NBR that need to be accounted
for to further improve correspondence of RdNBR
to field data. As pre-fire NBR is a proxy for
pre-fire biomass or canopy cover (Miller and
Thode 2007), our results suggest that areas with
high biomass were characterized by relationships
with steeper slopes for all our models; that is, the
same level of RdNBR equates to greater burn
severity in areas with higher pre-fire vegetation
cover—perhaps indicating that RdNBR may
slightly over correct for the effect of pre-fire bio-
mass or vegetation cover (Miller and Thode
2007). Our continuous data on stand structure

Fig. 8. Burn severity maps for the 2011 Red Rocks

Fire in Wyoming, USA. (a) Map of relative differenced
normalized burn ratio (RdNBR) for the region. (b–g)
Maps of predicted basal area killed by fire and charred
surface cover from RdNBR and interactions with
geospatial variables predictors (Q2). Shown are the
median, 5%, and 95% quantiles of the posterior includ-
ing the beta-distributed observation model component
(posterior predictions). The predictions are at the
specific intercept level estimated for the Red Rocks
Fire. (h, i) Difference in predicted (median) proportion
of basal area killed or charred surface cover between
the Q2 maps (d, e) and maps generated with only
RdNBR as a predictor (Q1).

(Fig. 8. Continued)
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for our field plots were chosen over assigning
categorical forest type variables to each plot;
however, future analyses could examine how
pre-fire NBR varies among forest types and
therefore how this affect corresponds to categori-
cally defined forest types.

Topographic effects on the relationship
between RdNBR and field measures of burn
severity were more muted than were effects of
latitude and pre-fire NBR, and RdNBR appears
to be more robust to variations in topography.
However, the topographic effects we detected
are logically consistent with the effects produced
by latitude. For example, the coefficients for heat
load index are inversely related to the coefficients
for latitude, whereas the coefficients for slope
mostly mirror those for latitude (Fig. 4). Since
higher values of heat load index and lower val-
ues of latitude and slope generally correspond to
greater direct solar radiation, these topographic
affects could be related to the increase in long
shadows cast by trees at higher latitudes and in
more shaded topographic positions. For the
minor effects of topography, and the more sub-
stantive effects of latitude and pre-fire NBR,
geospatial data on topography and geographic
location (and pre-fire NBR data which comes
with the burn severity bundle downloaded from
MTBS) can be applied to models that use RdNBR
to map individual effects of burn severity. We
suggest that doing so could result in more accu-
rate maps of burn severity.

Relative indices of burn severity (e.g., RdNBR
and RBR) are intended to improve consistency of
burn severity mapping across wide ranges of
pre-fire vegetation structure, but our finding that
stand-structure variables (which are typically
acquired through intensive field data) can affect
the relationship between field and satellite mea-
sures of burn severity suggests several important
points for interpreting burn severity maps. First,
we suggest that caution should be taken when
satellite indices are used to assess burn severity in
areas affected by pre-fire beetle outbreaks (Pri-
chard and Kennedy 2014, Meigs et al. 2016).
Specifically, our findings demonstrate that the
same value of RdNBR in an area affected by severe
pre-fire beetle outbreaks generally corresponds to
lower burn severity in the field than the same
value of RdNBR in areas unaffected by beetle out-
breaks prior to the fire. This suggests that, at least

for the five field measures of burn severity that we
included in our study, the effects of pre-fire beetle
outbreak severity on subsequent burn severity
may be more negative in sign than has been inter-
preted (Prichard and Kennedy 2014, Meigs et al.
2016). Pre-fire beetle outbreaks, where they
occurred in our plots, were 1–10 yr prior to fire
and in areas where most of the beetle-killed trees
were still standing at the time of fire; small diame-
ter and non-host trees comprised the live trees
(Harvey et al. 2013, 2014a, b, Andrus et al. 2016).
Whether longer intervals between beetle outbreaks
and subsequent fire would affect the relationship
between field measures and satellite indices of
burn severity remains to be tested. We also found
that pre-fire stand structure had important effects
on the relationship between satellite indices and
field measures of burn severity. The effect of pre-
fire basal area on decreasing the slope between
RdNBR and field measures of burn severity
demonstrates, similar to the effects of pre-fire NBR
above, that RdNBR may over correct for pre-fire
biomass. Higher values of QMD generally corre-
spond to stands characterized by large trees, open
forests, and woodlands (e.g., ponderosa pine and
Douglas-fir woodlands). In such stands, RdNBR
may be less sensitive to tree mortality because of
gaps between tree crowns, and therefore, lower
levels of RdNBR actually correspond to higher
levels of burn severity than they would in more
dense forests.
Distinct relationships between satellite indices

and each individual field measures of burn
severity can result in widely contrasting spatial
patterns of burn severity produced from the
same satellite-index map, and incorporating the
error in field–satellite relationships drives further
variability in mapped burn severity patterns.
Similar to findings in Whitman et al. (2018), we
found that, when comparing individual mea-
sures of burn severity within the same fire, tree
mortality burn severity was consistently greater
than forest-floor burn severity, and each exhib-
ited distinct landscape patterns (Fig. 8d–e).
However, we further demonstrate that account-
ing for the error in satellite-derived estimates of
field burn severity can drive nearly as much vari-
ability in landscape patterns of burn severity as
can different individual components of burn
severity (Fig. 8b–g). Future work could further
test these effects by quantitatively comparing
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landscape metrics of burn severity (as in Harvey
et al. 2016a) among fires mapped using different
levels of credible intervals in each burn severity
metric (e.g., comparing maps representing 95th
percentile estimates of burn severity to maps
representing 5th percentiles).

Future research can build on the insights and
limitations from this study by improving the per-
formance of satellite imagery and mapping indi-
vidual components of burn severity. First, the
fact that all three of the NBR-based indices were
similar in performance and continue to explain
up to approximately 60–70% of the variance in
field measures of burn severity (Cansler and
McKenzie 2012, Parks et al. 2014a) indicates that
further explanatory power may not be attainable
using the NBR equation (Roy et al. 2006) or with
analyses that are constrained by the 30-m pixel
scale of Landsat imagery (Woodcock and Strah-
ler 1987). The use of NBR-derived indices in com-
bination with other spectral information such as
spectral mixture analysis (Smith et al. 2007, 2010)
may improve accuracy of burn severity maps.
One particular utility of such sub-pixel
approaches is separating out the fraction of shad-
ows in each 30-m pixel, which may provide addi-
tional improvements to address the effects of
latitude. Combining spectral mixture analyses
with incorporation of variables that we show to
affect the relationship between NBR-based
indices and field measures of burn severity may
hold promise in future analyses. Second, all field
plots in our study were located in mature forests
that had not experienced recent (e.g., within the
last 30 yr) fires; therefore, canopy trees were gen-
erally ~20 m tall and several centuries old at the
time of fire. However, forests that have burned
severely and more than once in the last several
decades may be characterized by small-statured
vegetation (e.g., tree seedlings, shrubs, herbs) at
the time of the second fire (Coop et al. 2016).
Therefore, inquiries into the severity of short-suc-
cession re-burns (Parks et al. 2014b, Harvey et al.
2016a) could benefit from additional studies that
use our approach to compare satellite indices to
field measurements of burn severity in younger
burned forests. Third, the lack of pre-fire field
data in our study was a limitation common to
many studies examining fire effects. While the
use of our direct quantitative measures of burn
severity in the field provides information that

has more dimensions that a single CBI value,
quantitative pre- and post-fire field measure-
ments could improve opportunities to test the
relationship between RdNBR and other compo-
nents of fine-fuel (e.g., needles, litter, and duff)
consumption that are difficult to measure post-
fire. Finally, regional studies and meta-analyses
are needed to test the relationship between
RdNBR and individual field measures of burn
severity within and among locations (Morgan
et al. 2014, Kolden et al. 2015). In plots where
individual field measures of burn severity are
collected along with CBI data, such studies could
also include analyses to cross-walk values of CBI
with the direct measures of burn severity we
report here.

CONCLUSIONS

Accurately tracking burn severity across space
and time is critical during an era when fire
regimes are rapidly shifting. Our findings
demonstrate that relationships between satellite
indices and individual field measures of burn
severity vary considerably among canopy and
forest-floor measures of burn severity, and are
affected by several biophysical variables. As
some of these biophysical variables are easily
acquired with existing geospatial data (e.g., lati-
tude, pre-fire NBR), incorporation of those data
can improve accuracy of mapping actual burn
severity on the ground in regions where these
data are used to calibrate satellite burn severity
indices. However, unless similar geospatial data
exist for forest stand-structure variables (e.g.,
basal area and pre-fire beetle outbreaks) we sug-
gest caution when interpreting burn severity
from satellite indices in regions with wide gradi-
ents in these variables, as they affected the accu-
racy of RdNBR for mapping burn severity.
Finally, we demonstrate the importance of incor-
porating uncertainty in burn severity maps when
examining landscape patterns of burn severity—
as such landscape patterns vary widely from
error in estimates alone. Our results are from the
U.S. Rocky Mountains; however, the approaches
we employed can be applied elsewhere, and by
quantitatively capturing distinct components of
burn severity with individual models, burn
severity can be characterized and mapped for
unique components of a forest.
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