
Do you CBI what I see? The relationship between the
Composite Burn Index and quantitative field measures of
burn severity varies across gradients of forest structure

Saba J. SaberiA,B, Michelle C. AgneA and Brian J. HarveyA

ASchool of Environmental and Forest Sciences, University of Washington, Seattle,

WA 98195, USA.
BCorresponding author. Email: sjsaberi@uw.edu

Abstract. Burn severity in forests is commonly assessed in the field with visual ordinal estimates such as the Composite

Burn Index (CBI). However, how CBI (a composite of several individual field measures) relates to independent
quantitative measures of burn severity (e.g. fire-caused tree mortality, surface charring) has not been widely tested.
Here, we use field data from 315 plots in 14 fires in the north-western USA to ask: (1) howCBI relates to eight independent
field measures of burn severity; and (2) how these relationships vary across gradients of pre-fire forest structure. Overall,

CBI corresponded well with most independent field measures, but some measures of extreme burn severity (e.g. deep
charring on trees and snags) were not captured byCBI. Additionally, somemeasures of canopy burn severity corresponded
to lower CBI values in forests with larger average tree size (diameter and height) – potentially from decoupling of surface

and canopy fire effects in stands with larger, fire-resistant trees. Our findings suggest continued broad utility of CBI, while
highlighting how the correspondence of aggregate plot-level CBI to different measures of burn severity can vary with
forest conditions. We also suggest considerations for broadening CBI to account for more extreme levels of burn severity.
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Introduction

Fire shapes terrestrial ecosystems worldwide (Bowman et al.

2009), highlighting the importance of monitoring fire effects
over space and time (Eidenshink et al. 2007; Picotte et al. 2020).

One important dimension of fire activity is burn severity – the
magnitude of ecological change caused by fire – which is often
characterised as fire-caused vegetation mortality, charring, or

combustion of biomass (Keeley 2009). Burn severity has been a
major focus of fire ecology since the early 2000s (Keeley 2009;
Morgan et al. 2014) and is useful for characterising contempo-
rary fire regimes (e.g. Miller et al. 2009; Dillon et al. 2011;

Cansler and McKenzie 2014; Harvey et al. 2016). As climate
warming and increasing fire activity drive changes in fire
regimesworldwide (Abatzoglou andWilliams 2016;Westerling

2016; Johnstone et al. 2016), consistently measuring burn
severity across space and time is critical for understanding fire-
driven shifts in ecosystems.

TheComposite Burn Index (CBI; Key and Benson 2006) was
initially developed in 1996 (following analysis of 1994wildfires
in Glacier National Park) as a standardised fieldmeasure of burn

severity for calibrating satellite-derived indices of fire-caused
change. The most commonly used satellite indices are based on
the Normalized Burn Ratio (NBR), which detects fire effects
based on differences in the near-infrared band (NIR) and the

short-wave infrared band (SWIR) – two spectral bands that

correspond to fire-caused vegetation changes (Knipling 1970).
CBI is a unitless index of burn severity recorded in a 30-m
circular plot (to match Landsat satellite pixel resolution) where

field technicians visually reconstruct pre-fire conditions and
estimate the fire-caused change. CBI is calculated from semi-
quantitative ocular estimation of fire-caused change in up to five

strata, which are each assigned a number ranging between zero
(unburned) and three (high severity, or high levels of fire-caused
change) (Key and Benson 2006). CBI is useful in that it is fairly
quick to implement in the field and corresponds well with field

measures based on plant injury, fuel consumption and tree
mortality (Miller et al. 2009). As such, CBI is the most widely
used field protocol for quantifying burn severity (Dragozi et al.

2016) and has aided in calibrating maps of satellite indices of
burn severity to an on-the-ground index over wide regions
(Allen and Sorbel 2008; Miller et al. 2009; Soverel et al.

2010; Cansler and McKenzie 2012, Parks et al. 2019).
Despite widespread use, how consistently CBI captures

different dimensions of burn severity has not been tested widely.

The CBI of a field plot is commonly computed by collapsing
ocular estimates from different components (e.g. tree mortality,
scorch height, soil charring) within and among strata into one
number for the whole plot. This process can obscure many
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dimensions of burn severity andmaymiss important differences
among components of burn severity (e.g. differences between
tree mortality and soil charring;Morgan et al. 2014). Variants of

CBI have been developed to assign weights to each stratum or
component by their fractional cover (Geo CBI in the sense of De
Santis and Chuvieco 2009 or Weighted CBI as used by Soverel

et al. 2011), but the original CBI remains widely used. CBI data
come from ocular estimates and require extrapolation of pre- to
post-fire change, and therefore user or analyst subjectivity could

affect accuracy or precision. Among experienced forestry pro-
fessionals, there can be up to 16% disagreement in ocular
estimations of canopy cover (Korhonen et al. 2006; Miller
et al. 2009). In addition, while CBI was developed to be an

index of relative change that is applicable across forest types, it
is not known if CBI performs similarly across gradients of forest
structure (e.g. in stands with larger trees vs. smaller trees).

Other field protocols have been developed that directly
measure and quantify independent components of burn severity,
using plot configurations similar to CBI (e.g. Hudak et al. 2007;

Miller and Thode 2007; Harvey et al. 2014a, 2019; Andrus et al.
2016; Whitman et al. 2018). For example, proportion surface
char, proportion bole char (Harvey et al. 2013, 2014b referred to

this as ‘bole scorch’) and proportion needle scorch can be directly
measured on individual trees within a plot. Similarly, measure-
ments of tree populations and fire-caused mortality within a
census of all trees in a plot can provide direct measures of the

proportion of trees or tree basal area killed by fire (Harvey et al.
2019, Furniss et al. 2020). Quantitative protocols for directly
measuring burn severity,whilemore time-intensive thanCBI, can

provide detailed information about independentmeasures of burn
severity and can connect specific fire effects to processes
(Morgan et al. 2014). For example, deep charring on wood is

the thermally altered remnants of incompletely combusted vege-
tation, which occurs when fire intensity is very high and/or when
the woody material is already dead and fuel moisture content is
high (Baldock and Smernik 2002; Donato et al. 2009). Quantify-

ing the presence and abundance of deep char can provide insights
into fire intensity and/or sustained smouldering combustion
(Donato et al. 2009; Bird et al. 2015). Further, directly measured

variables are less prone to subjectivity by the recorder than are
ocular estimates (Korhonen et al. 2006). However, to our knowl-
edge, few comprehensive comparisons betweenCBI andmultiple

quantitative field measures of burn severity collected in the same
plot exist (but see Whitman et al. 2018) – likely because
independent measurements of burn severity and CBI are rarely

co-located (Morgan et al. 2014).
In this study, we use multiple field measures of burn severity

(CBI and eight independent quantitative measures) in 315 field
plots in recently burned forests across the north-western USA to

address two research questions. (1) How does CBI relate to eight
independent quantitative field measures of burn severity? (2)
How does the relationship between CBI and independent quanti-

tative field measures differ across gradients of forest structure?

Methods

Study area

The study area covers an elevation gradient from400 to 2200mand
moisture gradient fromcontinental tomaritime (approx. 50–250 cm

annual precipitation) (PRISM Climate Group, available at https://
prism.oregonstate.edu/normals/), containing forests from the west

side of theCascadeMountains to theUSNorthernRockies (Table 1
and Fig. 1). Forested areas of the north-western USA are char-
acterised by awide spectrumof historical fire regimes ranging from

frequent low-severity fires (every ,5 years with little overstorey
tree mortality) to infrequent high-severity fires (occurring every 2–
5 centuries with near-complete overstorey tree mortality) (Agee
1996; Baker 2009). In general, fire frequency is inversely related to

fire severity; shorter intervals between fires correspond to lower
severity andvice versa (Agee 1996). Forests are conifer-dominated,
with a variety of species possessing different fire-adapted traits.

Thick-barked species (e.g. Pinus ponderosa (ponderosa pine),
Larix occidentalis (western larch)) that can survive frequent, low-
severity fires occur at relatively low-elevation, warm and dry

locations, while thin-barked species that are adapted to colonise or
invade from seed (e.g. Pinus contorta (lodgepole pine) and Abies

lasiocarpa (subalpine fir)) following infrequent, high-severity fire

occur at relatively high-elevation, cool and moist locations (Agee
1996; Baker 2009).

Field data collection

We sampled fires across gradients of burn severity, fire

regimes and forest zones from 14 fires in nine National Forests
and two National Parks across the north-western USA
(Supplementary Table S1). During the summers of 2017 and

2018, we collected post-fire burn severity data in the field from
forests that had burned 1 year before sampling (2016 and 2017,
respectively). Unburned plots were also sampled in each fire,

and were located either within the fire perimeter in unburned
stands or outside the fire perimeter in analogous forest condi-
tions. Unburned plots were located an average of 359m outside

fire perimeters; however, three unburned plots in one fire were
located in analogous stands 12 km from the fire perimeter, as
an active fire burning during fieldwork limited access to
immediate proximity. Plots were separated by a minimum

Table 1. Descriptive statistics of physical setting and pre-fire stand

structure variables across all 315 plots

DBH, diameter at breast height; QMD, quadratic mean diameter

Variable Min–max Mean Median

Physical setting

Latitude (decimal degrees) 43.8–47.4 45.4 44.4

Longitude (decimal degrees) –122.6 to –110.7 –117.9 –120.9

Elevation (m) 408–2227 1480 1447

Slope (degrees) 0.3–37.4 13.6 12.8

Heat load (MJ cm�2 year�1) 0.06–1.42 0.50 0.27

Pre-fire stand structure

Basal area (m2 ha�1) 0.4–144.0 28.4 20.9

Stand density (stems ha�1) 111–133 800 2715 1422

Large trees only (.10 cm DBH) 67–22 554 1015 623

QMD (all trees, cm) 0.2–79.8 19.1 15.6

QMD (all trees live at fire) 0.5–74.3 21.9 19.2

Maximum tree height (m) 1.4–68.3 18.0 16.8

Mean tree height (m)A 2.2–49.3 16.8 15.6

Pre-fire live canopy cover (as prop.) 0.48–0.99 0.69 0.66

AOf 20 tallest trees in plot
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distance of 400m tomitigate potential pseudo-replication from
spatially correlated burn severity (Harvey et al. 2013) and were
located a minimum of 100m from roads or trails. Within each

fire, plots were evenly distributed among four categories of
observed fire effects corresponding to likely fire behaviour:
unburned (no fire effects observed); light surface fire (forest

floor vegetation burned, but little charring/scorching high on
tree boles); severe surface fire (most forest floor vegetation
burned and moderate to high levels of overstorey tree

mortality); and crown fire (canopy trees charred and near or
actual 100% tree mortality).

Each plot was a 30-m diameter circle divided into four
quadrants using two 30-m transect tapes oriented in the four

cardinal directions. Within each plot, we followed the CBI
protocol (Key and Benson 2006) by recording visually esti-
mated fire effects across five forest strata: (1) substrate;

(2) herbs, low shrubs and trees ,1m tall; (3) tall shrubs and
trees 1 to.5m tall; (4) sub-canopy trees; (5) upper canopy trees
in a 30-m diameter circular plot.We assigned index values to the

nearest 0.1 between 0.0 and 3.0 to each stratum, with 0 indicat-
ing no fire effects (unburned) and 3.0 indicating maximum burn
severity (e.g. mortality of all vegetation). The index values for
each stratum were averaged to obtain a single plot-level CBI

estimate. For consistency in CBI measurements across plots,
field personnel conducting CBI assessments were consistent
across all plots, and the protocol was first calibrated with the fire

effects team at Grand Teton National Park. In addition, CBI was
collected in each plot before quantitative measures of burn
severity were recorded so as to not bias CBI estimates from

prior knowledge of measured burn severity in a plot.

Field measurements

Immediately after recording CBI estimates in each plot, we
collected field data to calculate eight quantitative measures of

burn severity, five from the canopy and three from the forest
floor (Tables 2, 3, 4, Fig. 2). Canopy measures of burn severity
included: proportion of tree mortality by basal area and by

number of trees, proportion change in live canopy cover, an
ordinal index of tree live and dead needle retention (Table 2), the
proportion of charred tree bole circumference (considered a

canopymeasure because it is a strong predictor of treemortality;
Harvey et al. 2013, 2014a, 2014b, 2019; Andrus et al. 2016),
char height, an ordinal index of deep char (Table 3) and pro-

portion surface char.
In each plot, all trees in the 30-m circular plot were measured

for diameter at breast height (dbh, or 1.37 m), identified to
species, and assigned as live, dead or killed by fire, or dead and

killed before fire. Next, canopy cover was measured using a
densiometer and tallying the number of squares with live
vegetation, dead vegetation, or open sky in all four cardinal

directions at 3-, 9-, 21- and 27-mmarks along both transects (24
total points in each plot). All other independent tree-related
measures (dead needle index, bole char, char height and deep

char) were recorded for the 20 tallest trees per plot (the five
tallest trees within each of the four quadrants of the circular
plot). These 20 tallest trees were assigned a needle index value
from 1 to 7 (Table 2). To record bole char, we visually estimated

the proportion of bole circumference charred by fire on each of
the 20 trees. Tree height was measured to the nearest 0.1 m on
each of the 20 trees using a laser rangefinder or avalanche probe

for shorter trees, and char height was measured with the laser
rangefinder at the highest point of char on the tree bole. Lastly,
values for the deep char index were recorded on each of the 20

trees via ocular estimation (Table 3). The percentage of charred
surface cover wasmeasured by tallying the surface char (i.e. any
charred soil, rock, litter, vegetation every 10 cm along each of

the cardinal direction transects from 0 to 12 m and 18 to 30 m,
avoiding plot centre where foot traffic during plot installation
could have disturbed the forest floor).
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Fig. 1. Map of study area with each fire (in red) sampled in this study.
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Independent metric calculations

Field data were calculated into eight independent metrics of
burn severity reported as proportions (continuous values
between 0 and 1, including 0 and 1), with each plot assigned a

mean value for each variable. For fire-caused change, logical
minimum values are 0 (no change) and maximum values are 1.0
(100%), and thus 0–1 (or 0–100%) were set as bounds that

values could not exceed. Several metrics required reconstruct-
ing pre-fire values to calculate change, whereas others were
direct measures of post-fire attributes and did not require

reconstructing pre-fire values. The latter condition was espe-
cially true when the pre-fire condition could be safely assumed
to be zero (e.g. no pre-fire surface char on the forest floor).

Fire-caused tree mortality (basal area and number of trees)

and canopy cover change required reconstructions of pre-fire
values. To calculate proportion treemortality by number of trees
and by basal area, the number of trees and total basal area that

were killed by fire were divided by the number of trees and total
basal area live at the time of fire, respectively. Fire-caused
change in live canopy cover at the plot level was calculated by

subtracting the measured post-fire live canopy cover from
modelled pre-fire live canopy cover, and dividing by the
modelled pre-fire live canopy cover. Pre-fire live canopy cover

was modelled for each plot using reconstructed pre-fire live
basal area and piecewise linear beta (b) regression models built
from analogous data in unburned plots where we had measure-

ments of live canopy cover and live basal area (Supplementary
Fig. S1, Tables S2, S3). This approach was chosen as an
alternative to modelling pre-fire canopy cover using allometric
relationships used in simulation models (e.g. Forest Vegetation

Simulator, Crookston andDixon 2005) that have been applied in
other systems (Miller et al. 2009). We opted for this approach
because we had locally relevant data from unburned plots to

build our own plot-level models. In the few cases (approx. 10%
of the burned plots) where the model predicted an increase in
live canopy cover from pre- to post-fire, values of canopy over

change were manually set to zero since a post-fire increase in
live canopy cover is unlikely over the period between the fire
and our field measurements. Not allowing the responses to

exceed zero and one was a requisite of our modelling structure
(see data analysis below) and the few instances where the
modelled change in live canopy cover indicated an increase
were likely an artefact of the uncertainty in the model, as

opposed to real changes in canopy cover.
The remaining metrics did not require calculating pre-fire

values as they were all assumed to be zero pre-fire. For each

measuredmetric of dead needle index, char height, bole char and
deep charring that was recorded for the 20 randomly selected
dominant canopy trees, the value was converted to a proportion

of maximum for each tree, and averaged across the 20 trees per
plot. For example, char height was converted to proportion by
dividing char height by the total tree height; a maximum char
height of 15 m on a tree that was 20 m tall would receive a score

of 0.75 for char height. Surface char was converted to a
proportion by dividing the number of ‘hits’ of surface char on
the ground cover survey by the total number of points surveyed

Table 2. Descriptions of each possible value for the dead needle index

Index value Description

1 Live tree, brown needles along 0–5% of total tree height

2 Live tree, brown needles along 5–50% of total tree height

3 Live tree, brown needles along .50% total tree height

4 Dead tree, retains .50% of needles

5 Dead tree, retains 5–50% of needles

6 Dead tree, retains ,5% of needles

7 Dead tree, retains ,5% of needle-bearing branches

Table 3. Descriptions of each possible value for the deep char index

Index value Description

0 No deep char present

1 Deep char present around base of bole, not into crown

2 Deep char present into crown of tree

Table 4. Description of Composite Burn Index (CBI) and all independent field measures of burn severity, and the range, median and mean of their

values across all 315 plots

Variable name Variable description Range Median Mean

CBI Average CBI value per plot, converted to proportion from the 0–3 scale 0–1 0.47 0.43

Change in live

canopy cover

Average proportion change in live canopy cover per plot. Proportion of pre-fire canopy in burned plots was

modelled using the relationship between plot basal area and proportion of live canopy in from unburned plots

0–1 0.56 0.51

Dead needle Average needle index value per plot, averaged from 20 randomly selected trees alive at time of fire, converted

to proportion from 0–7 scale

0–1 0.44 0.44

Killed BA Proportion of average tree basal area alive at time of fire and killed by fire per plot 0–1 0.31 0.44

Killed trees Proportion of average number of trees alive at time of fire killed by fire per plot 0–1 0.63 0.53

Char height Average proportion of total tree height charred from 20 randomly selected dominant canopy trees alive at time

of fire

0–1 0.23 0.38

Bole char Average proportion of visible char on 20 randomly selected dominant canopy trees alive at time of fire 0–1 0.99 0.66

Deep char Average deep char index value on 20 randomly selected dominant canopy trees alive at time of fire, converted

to proportion from 0–2 scale

0–1 0 0.03

Surface char Average proportion of plot containing charred material on surface, taken from 480 points every 10 cm apart

along main plot axis (N–S, E–W)

0–1 0.16 0.28
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(480 points). For example, a plot with 360 hits of charred
material on the forest floor would receive a score of 0.75 for
surface char.

To characterise pre-fire stand structure in each plot, we also
calculated the following five stand structure variables from field
measurements: stand density (stems ha�1), basal area (m2 ha�1),
quadratic mean diameter (cm), mean tree height (m), pre-fire

live canopy cover (proportion,modelled as previously described).
Stand density, basal area and mean quadratic diameter were
derived from independent measurements taken from every tree

in the plot (complete population survey). Mean tree height
was derived from the heights of the 20 tallest trees in the
plot and therefore represents the mean height of canopy-

dominant trees.

Data analysis

For ease of comparison among variables, each field measure
that was not originally measured as a proportion was converted

from its native scale and units to a continuous proportion
ranging from 0 (unburned) to 1 (maximum possible burn
severity value). Indices were capped between 0 and 1 because

values outside these bounds (e.g. a char height exceeding tree
height) are impossible. To test how well CBI corresponds to
each quantitative measure of burn severity (Q1), we created

zero/one inflated beta (ZOIB) regression models (Ospina and
Ferrari 2012) with the quantitative field measure as the
response variable and CBI as the predictor variable. We fitted
General Additive Models for Location Scale and Shape

(GAMLSS) and specified ZOIB distributions to allow for 0, 1
and continuous proportions between 0 and 1 as values for the
response variable using the ‘gamlss’ package in R version

3.4.3. (Rigby and Stasinopoulos 2005; R Core Team 2017). In
the ZOIB framework, three parameters are used in the distri-
bution: mu, nu and tau (Ospina and Ferrari 2012). Mu repre-

sents the mean of the beta distribution when the response is
between 0 and 1, exclusive. Nu and tau represent the proba-
bility that the response will be either 0 or 1, and the relationship
is as follows:

nu

1þ nuþ tau
¼ probability of zeros

tau

1þ nuþ tau
¼ probability of ones

Model uncertainty was quantified using 1000 parametric
bootstrap iterations. For each iteration, we simulated data from

the original model, fit a new model to the simulated data, and
then used the newmodel to predict each response variable across
a range ofCBI values between 0 and 3. The 2.5%quantile,mean,
and upper 97.5% quantile of the bootstrap predictions were

plotted to construct a 95% confidence interval around the mean
of the predicted response values.

We evaluated model fit for each of the eight models using

the Area Under Receiver Operating Characteristic curves
(AUC) over a sequence of proportion thresholds (0.05,
0.275, 0.5, 0.725 and 0.95) for the continuous field measure

of burn severity. We also calculated average AUC values
across all five thresholds for each of the models
(Supplementary Table S6). AUC values were calculated by

dichotomising the field response proportions into zeroes and
ones for each classification threshold. AUC values below 0.5
indicate poor model fit or capacity to distinguish presence and

Bole char, Char height, Deep char Surface charKilled BA and trees

Live canopy cover loss(a) (b )

(e)(d )(c )

Needle index Live CharredScorched

1 2 3 4 5 6 7

Deep char

Char height

Post-firePre-fire

Post-firePre-fire

Bole char

Fig. 2. Schematic representing the eight independent field measures: (a) shows how 100% canopy cover loss comes from a fully live canopy

transitioning to a fully dead canopy; (b) shows each of the seven index values; (c) represents killed basal area and trees with an aerial view of boles;

(d) represents deep char, char height and bole char on a single tree; and (e) shows how surface char is measured along two transect lines.
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absence (Pearce and Ferrier 2000). To understand relationships
among burn severity metrics, we also compared the pairwise
relationships among each of the field measurements using

Spearman’s rank correlation coefficients.
To test how relationships between CBI and each independent

measure of burn severity vary across a gradient of forest stand

structure variables (Q2), we built regression models with CBI as
the dependent variable, each of the eight field metrics as the
respective independent variable, and each of the five stand

structure variables as the secondary covariate, or interaction
term (model equation: CBI ¼ independent field metric � stand
structure variable). In each model, an interaction term tested for
an effect of each stand structure variable on the relationship

between CBI and each independent measure of burn severity.
We tested whether the slopes and intercepts of these models
differed when we fixed the value of the stand structure covariate

at its 5th, 50th and 95th percentile values using the same
bootstrapping technique used for Q1. Analyses for Q2 used
the same model framework (ZOIB regressions) and model fit

analysis (AUCs for five thresholds) as analyses for Q1. To test
for significant effects of interaction terms (and therefore effects
of stand structure on the relationship between each independent

field measure of burn severity and CBI) for Q2, we considered
P# 0.10 as suggestive evidence,P# 0.05 asmoderate evidence
and P# 0.01 as strong evidence. We use these three cut-offs to
mitigate the exclusion of potentially meaningful ecological

relationships when analysing inherently noisy observational
field data (Ramsey and Schafer 2012).

Results

Independent field measures and CBI

CBIwas consistently and positively related tomost (seven out of
eight) independent measures of burn severity (overall AUC
values$ 0.86, Fig. 3, Supplementary Tables S5, S6). In general,
CBI performed better as a predictor of independent measures of

canopy burn severity (Fig. 3a–j) than independent measures
of surface burn severity (Fig. 3k–p). There was a general trend of
consistently high performance (AUC. 0.90) of CBI across the

gradient of burn severity percentiles (Fig. 3b, f, h, p), with slight-
to-modest declines in performance of CBI at upper percentiles
(75th and 95th) of burn severity (Fig. 3d, j, l). The two steepest

declines of performance for CBI at high levels of burn severity
were for the dead needle index (Fig. 3d) and char height (Fig. 3l).
Most independent measures of burn severity (including CBI)

were highly correlated with each other (r $ 0.80, Fig. 3).
The relationship between CBI and deep char was an excep-

tion to the generally high correspondence between CBI and
independent field measures (Fig. 3, Supplementary Table S6).

CBI was positively related to deep char (Fig. 3m), but to a much
weaker degree overall (overall AUC¼ 0.86 vs$ 0.95 for other
measures) than were the other independent field measures. The

relationship between CBI and deep char also varied in the trend
over the gradient of burn severity. AUC increased in the upper
percentiles (75th and 95th), contrary to the relationship between

CBI and other variables (Fig. 3n). Among pairwise correlations
between variables, deep charwas the least correlated (r¼ 0.40 to
0.54) with other measures or CBI (Fig. 4). The absence of strong
evidence that deep char could be reliably modelled from CBI

(P . 0.01 for mu, P , 0.001 for nu and P . 0.10 for tau
parameters of model) resulted in deep char being not analysed
for the second research question.

Independent field measures and CBI across forest structure
gradients

Overall, stand structure had a greater effect on the relationship

betweenmeasures of canopy burn severity andCBI than it did on
the relationship between surface burn severity and CBI. In
general, for stands with taller and larger trees (greater pre-fire

live canopy cover, tree height, basal area and quadratic mean
diameter (QMD)), a given CBI value (e.g. 2.0) corresponded to
lower values of canopy burn severity than in stands with shorter
and smaller trees (Fig. 5b1–b4 vs g). Pre-fire stand density

affected fewer relationships between CBI and independent burn
severity measures (Fig. 5a5–g5), but when effects were present,
they were generally opposite to those for other stand structure

variables (e.g. basal area, QMD).
Relationships betweenmeasures of surface burn severity and

CBI were less affected by stand structure than were measures of

canopy burn severity (Fig. 5). The relationship between char
height and CBI was affected by pre-fire stand structure in the
same direction, though in lower magnitude than measures of

canopy burn severity (i.e. stands with taller and larger diameter
trees had lower canopy burn severity for a given value of CBI,
Fig. 5). The relationship between bole char and CBI was
opposite, in that stands with shorter and smaller diameter trees

had lower canopy burn severity for a given value of CBI (Fig. 5).

Discussion

Understanding howCBI relates to independentmeasures of burn
severity across gradients of forest stand structure is important, as

CBI is among the most widely used metrics in fire ecology. Our
findings suggest that CBI captures many independent compo-
nents of burn severity across a range of burn severities and forest
types throughout a temperate fire-prone forested region. Most

independent field measures of burn severity (except for deep
char) correspond consistently with CBI, with some variability in
the relationships betweenCBI and each independentmeasure. In

addition, because the relationships between CBI and indepen-
dent field measures vary by forest structure attributes, under-
standing such effects can help with interpreting burn severity

when CBI is the only information available. Finally, we suggest
that recording additional measurements such as deep char to
augment CBI can provide important information about sus-

tained smouldering combustion and the consumption of legacy
trees (Donato et al. 2009) – a dimension of burn severity that is
not currently characterised fully by CBI.

Independent field measures of burn severity and their
relationship with CBI

Our findings of the individual relationships between CBI and
independent measures of burn severity help to inform the utility

and potential limits of CBI for inferring different dimensions of
fire effects. The consistent correspondence between CBI and
canopymeasures of burn severity has important implications for

the use of CBI as an indicator of burn severity on the live tree
population. Our results support findings of a strong relationship
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between CBI and canopy burn severity reported for boreal for-

ests (Whitman et al. 2018) and suggest that CBI is consistently
related to canopy burn severity across a broad range of conifer
forests. This correspondence between CBI and canopy burn

severity is important for being able to characterise the effect of
fire on post-fire vegetation trajectories. Canopy burn severity
can dictate the legacies (remaining live trees as a seed source),
given the relationship between canopy burn severity and post-

fire tree regeneration (e.g. Harvey et al. 2014b). In addition, high
canopy burn severity can allow more light to reach the under-
storey, affecting competitive outcomes for understorey vege-

tation (Brodie et al. 2021).
In contrast, our finding that CBI did not correspond well to

deep char suggests that CBI may be not fully representing other

dimensions of burn severity such as the effect of fire on snags
and coarse woody debris and sustained smouldering combustion
(Donato et al. 2009). This finding has key implications for the
use of CBI to infer immediate and post-fire carbon dynamics,

which are an understudied dimension of fire effects (Stenzel
et al. 2019). The lack of strong correspondence betweenCBI and
deep char is likely because the CBI protocol accounts for deep

char found on wood on the forest floor, and a CBI of 3.0 can
occur with the current CBI protocol even if there is no presence
of deep char. However, our fieldmeasures included deep char on

standing snags and live tree boles. As such, CBI may miss some

important dimensions of deep char, such as not capturing the

effects of fire on branch and outer wood or bark consumption on
snags (Talucci and Krawchuk 2019). Thus, while CBI relates to
most independent fire effects within a plot, collecting additional

information on deep char – especially on snags – can provide
additional key information on important effects across vertical
strata.

Our findings that CBI relates to some field measures more

poorly at the high end of burn severity has implications for
tracking potentially greater levels of burn severity as fire activity
increases. Weaker relationships between CBI and independent

measures (particularly char height, bole char and the needle
index) as burn severity increased suggests that CBI is a better
predictor of independent metrics at lower burn severity levels.

At the low end (e.g. an unburned plot), the strong relationship
between CBI and independent measures of burn severity is a
result of both values being bound by zero, creating a region of
the data where all points will have perfect correspondence.

However, CBI can only go to a maximum value of 3, but a CBI
of 3 does not necessarily capture the full range of high severity
recorded by independentmeasures in plots (Morgan et al. 2014).

For example, a stand with 100% vegetation mortality but snags
mostly still intact with little to no deep char can receive a CBI of
3.0, but so can a stand with 100% vegetation mortality and all

snags and/or coarse woody debris deeply charred or consumed
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(e.g. ‘crown fire plus’; Turner et al. 2019). In this example, these
two stands are equal in fire-caused vegetation mortality but are
qualitatively different in other measures of burn severity. This

context of burn severity greater than the scale of CBI, with high
amounts of deep char produced on logs and snags, is common
when fire follows soon after another disturbance such as a beetle

outbreak (e.g. Harvey et al. 2014a; Talucci andKrawchuk 2019)
or a prior fire (e.g. Donato et al. 2009; Turner et al. 2019). In
sum, as the current maximum of CBI at 3.0 can include burn
severity where little to no deep charring is occurring in a stand,

this may mean that increased levels of burn severity are not
being captured by CBI and additional information could detect
greater degrees of burn severity either with an amended CBI or

with ancillary measures.

Differences in relationships between CBI and independent
field measures across forest structure gradients

Our finding that the relationship between CBI and independent
fieldmeasures varies by pre-fire stand structure has implications
for the use of CBI as a standardised indicator of burn severity

across forest gradients. For example, in forests with taller,
larger-diameter trees, there is a greater potential for a decou-
pling of surface and canopy fire effects. All else equal, larger-
diameter and taller trees are generally more fire-resistant (Hood

et al. 2008; Pausas 2015) and have tree crowns that are physi-
cally separated from (i.e. higher above) the forest floor. In our
study, the plots with the greatest QMD and tree height were also

the plots with the greatest abundance of ponderosa pine and
Douglas-fir – two species with high fire resistance for larger

individuals (Harvey et al. 2013; Dunn and Bailey 2016; John-
ston et al. 2019; Stevens et al. 2020). In such plots, field-based
CBI values consistently overestimated canopy mortality, as

surface burn severity could be greater (i.e. a higher CBI value)
without translating to severe effects on fire-resistant trees. For
example, there were some plots where only,15% of basal area

(BA ) was killed, but the CBI value was 2.25 (75% of the total
CBI scale) or greater because of severe surface burn severity.
Conversely, shorter and smaller-diameter trees are generally
less fire-resistant, and experience effects more similar to the

forest floor vegetation. As such, we found generally similar
effects between the surface and canopy severity and more
consistent correspondence between CBI and independent mea-

sures of burn severity in plots with smaller and shorter trees.
Collectively, our findings suggest that using an aggregated value
of CBI (often the only available information to users) without

information on the forest stand structure can lead to an over-
prediction of canopy burn severity in cases where large, fire-
resistant trees are present.

Suggested augmentation to collecting CBI data

Our study highlights that CBI captures many dimensions of
independent measures of burn severity, and that some additional
data collection could fill a gap for dimensions of burn severity

that CBI does not include. Specifically, in its current form, CBI
does not fully capture some components at the extreme high
end of burn severity, such as deep charring (or complete

combustion) of boles of standing trees and snags, which are of
high ecological importance (Donato et al. 2009; Turner et al.

0.24

1

1

1

1

1

0

0 3 3 3 3 3 3 3

0.5

0.5

0.5

0.5

0.5

1.5 1.5 1.5 1.5 1.5 1.5 1.5

Char height

(a1) Live canopy (prop.) (b1)

(b2)

(b3)

(b4)

(b5) (c5)

(c4)

(c3)

(c2)

(c1)

(d2)

(d3)

(d4)

(d5)

CBI

(e5)

(e4)

(e1) (f1)

(f2)

(f3)

(f4)

(f5) (g5)

(g4)

(g3)

(g2)

(g1)

(e2)

(e3)

(d1)

(a2) Tree height (m)

(a3) Basal area (m2 ha–1)

(a4) QMD (cm)

(a5) Stems ha–1 

Bole char Surface char Dead needle Killed BA Killed stems Canopy cover change

P
ro

po
rt

io
n

B
as

al
 a

re
a 

ha
–1

Q
M

D
M

ea
n 

tr
ee

 h
ei

gh
t

P
re

-f
ire

  l
iv

e 
ca

no
py

S
te

m
s 

ha
–1

 

0.73
0.95

*** ***

***

***

***

*** ***

*** *

*** ***

***

** ** **

***

**

***

*

*

*

6

3

5
19
48

144
494
1518

20
78

16
33

Fig. 5. Zero/one inflated beta regressionmodels for each of the eight independent burn severity metrics with CBI as the predictor variable and each of

the five forest stand structure variables as the secondary covariate. The red, blue and yellow lines show the model prediction values when the secondary

covariate is fixed at its respective 5th, 50th and 95th quantile values. The asterisks represent the levels of significance on parameters of the interaction

term,with one asterisk indicating that at least one parameter in themodel has aP value,0.1, two indicating that at least one parameter in themodel has a

P value ,0.05, and three indicating that at least one parameter has a P value ,0.01.

Field measures of burn severity Int. J. Wildland Fire I



2019; Talucci and Krawchuk 2019). Given the widespread
adoption and high utility of CBI over many decades, it may be a
practical solution to include ancillary data on dimensions of

burn severity such as deep charring. Such information could be
rapidly assessed while continuing to use the current CBI pro-
tocol, without a substantive added cost of additional sampling

effort, as our findings suggest that most other dimensions of
burn severity are captured quite well by CBI. Alternatively, as
fire activity changes in many regions worldwide (Pausas and

Keeley 2021) and more ‘extreme’ burn severity is recorded
(Turner et al. 2019), there may be important opportunities to
update CBI so that the maximum end of the scale (currently 3.0)
includes more severe fire effects as they are observed.

Management implications

Recent developments in mapping burn severity have moved
from mapping burn severity using satellite indices (e.g. the
differencedNBR;Miller et al. 2009) towardsmappingCBI as an

index of on-the-ground burn severity (Parks et al. 2019). The
relationships we show between CBI and independent fire effects
can further these developments by converting maps of CBI into

maps of independent field measures (e.g. tree basal area loss or
surface char) – providing a crosswalk between CBI and indi-
vidual measures of burn severity. However, testing of the
uncertainty in relationships at multiple levels (e.g. field mea-

sures and satellite data) warrants further study, as a wide range
of fire effects for some measures can result from a single CBI
value, particularly at the higher end of CBI. There are few burn

severity studies that explicitly incorporate uncertainty into
severity maps (Harvey et al. 2019; Furniss et al. 2020), and they
suggest that there is a considerable degree of uncertainty in

predictions used in burn severity mapping. With uncertainty
quantified, maps can show the predicted value of burn severity
measures, as well as the range of likely outcomes for different
metrics at each location (Harvey et al. 2019; Furniss et al. 2020).

Given the widespread use of severity maps (such as the US
Forest Service’s MTBS (Monitoring Trends in Burn Severity)
and RAVG (Rapid Assessment of Vegetation Condition after

Wildfire) programs, which can be used for post-fire restoration),
the adoption of uncertainty-inclusive burn severity maps that
come from independent, ecologically important metrics like

those in our study can help inform management decisions by
identifying areas of greater and lesser confidence in on-the-
ground burn severity.

Our findings also highlight some limitations to the use of CBI
and suggest some areas where additional information could
increase its utility. Our analyses demonstrate that a plot-level
value for CBI may not mean the same thing in different forests

and incorporating information on pre-fire stand structure can
help calibrate CBI to burn severity across fires. Information on
stand density, QMD and tree height (variables that are not

captured currently in the CBI protocol) could be helpful to
know if CBI is likely to infer a greater than actual canopy burn
severity. Where geographic information system (GIS) data are

available for pre-fire forest structure in burned areas, maps of
independent measures of burn severity could be adjusted based
on the relationships between CBI and the independent measure
given the stand structure context. This could help mitigate cases

where the relationship between CBI and other measures varies
substantially by pre-fire stand structure (e.g. Fig. 5g4). For
example, in stands with tall trees (e.g. .35 m), large-diameter

trees (e.g. QMD. 50) and high basal area (e.g..80m2 ha�1), a
given value of CBI corresponds to lower values of canopy burn
severity than stands with shorter, smaller-diameter trees and a

lower total basal area. Finally, our study presents important
information about conditions when CBImay be underpredicting
burn severity, especially at the highest level of burn severity. In

such conditions, CBI may fail to capture important fire effects
such as deep char high in tree boles or high loss of biological
legacies when consumption rates are high, factors that are
important for post-fire forest recovery (Talucci and Krawchuk

2019; Turner et al. 2019). Additional field measurements to
augment CBI (e.g. noting deep char or snag consumption) can
help to capture extreme levels of burn severity where manage-

ment action may need to respond with post-fire rehabilitation
efforts.

Conclusion

In testing the relationship between CBI and independent burn

severity metrics in co-located plots, we found that CBI captures
most independent components of burn severity, and that these
relationships can vary according to gradients of forest structure.

Burn severity studies have relied on CBI to assess in-field burn
severity since its development in 1996 (Morgan et al. 2014;
Kolden et al. 2015), and our study suggests CBI has generally
consistent relationships with independent field metrics. How-

ever, the relationship between CBI and some measures of burn
severity varies across gradients of burn severity and forest
structure. Our study builds further understanding of the rela-

tionship between CBI and independent field metrics and our
models provide useful information for mapping ecologically
meaningful fire effects. Potential modifications to CBI include

collection of ancillary data such as the percentage of deep char in
each vertical stratum, as well as redesigning CBI to have a scale
that includes possibilities of the more extreme burn severity that

has been observed in recent years. Testing and refining the
methods for measuring burn severity are important in an era of
increasing fire activity and changing fire regimes.
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