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Abstract

The combination of continuing anthropogenic impact on ecosystems across

the globe and the observation of catastrophic shifts in some systems has gener-

ated substantial interest in understanding and predicting ecological tipping

points. The recent establishment and full operation of NEON has created an

opportunity for researchers to access extensive datasets monitoring the compo-

sition and functioning of a wide range of ecosystems. These data may be

uniquely effective for studying regime shifts and tipping points in ecological

systems because of their long time horizon, spatial extent, and most impor-

tantly the coordinated monitoring of many biotic and abiotic components of

focal ecosystems. The variety of these data can capture a range of potential

community shifts while also monitoring an extensive set of environmental

drivers. This combination is critical for assessing whether changes are a result

of external forcings or internal dynamics. Here, we present an overview of

regime shift dynamics; describe a variety of approaches to identify tipping

points with data from time series, spatial patterns, or frequency distributions

of community states across environmental conditions; and suggest a number

of NEON data products that may be appropriate for such analyses.
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INTRODUCTION

Current trajectories of ecological change have raised con-
cerns about regime shifts (a rapid and dramatic change
in the state of a system, which, in ecological contexts, is
generally characterized by a shift in dominant members
of a community) in a variety of ecosystems and across
spatial and temporal scales. Shifts in climate, disturbance
regime, or other environmental characteristics may push
ecological regimes into “alternative stable states,” charac-
terized by nonlinear and potentially irreversible changes
(Folke et al., 2004; Johnstone et al., 2016; Kefi
et al., 2007; Scheffer et al., 1993). These regime shifts may
be marked by a specific threshold or “tipping point”
at which mechanisms of ecosystem resilience are
exceeded, leading to substantial changes in ecosystem
structure, function, or dynamics (Andersen et al., 2009;
Moore, 2018; Rietkerk et al., 2004). With continued
anthropogenic disturbances and accelerating climate
change, strengthening our ability to identify, anticipate,
and forecast ecological tipping points is crucial for navi-
gating current and future ecosystem change (Biggs
et al., 2009).

Theory around the identification and dynamics of
regime shifts and tipping points has become relatively
well established (Dakos et al., 2015; Ratajczak
et al., 2018; Scheffer et al., 2015); however, empirical
approaches have been more limited, largely because of
the logistical challenges of working in complex systems.
Empirical efforts have largely focused on specific systems
and locations that were amenable for analysis. Because of
logistical constraints, ecological data are generally col-
lected in individual studies lacking spatial and temporal
continuity and focused on a constrained set of factors
expected to be drivers of community change. Each
of these issues imposes certain limitations on those
studies. Most critically, a number of synthesis studies
(Bestelmeyer et al., 2011; Filbee-Dexter et al., 2018;
Ratajczak et al., 2018; Zinnert et al., 2021) have identified
long-term observational studies as a key need for identi-
fying and exploring regime shifts and tipping point
dynamics in ecosystems. With certain notable exceptions
(including fast cycling planktonic communities or other
microbial communities), many of the systems of greatest
concern for having tipping points undergo shifts over
month, year, or decadal timescales (Figure 2), and long-
term monitoring is the only way to capture major transi-
tions and to assess their persistence (Zinnert et al., 2021).
Tipping points also occur in complex systems with many
connected components and potential drivers of shifts.
Yet, studies of regime shifts generally focus on a small
number of factors that are expected to have significant
influence on the transitions (e.g., Muthukrishnan

et al., 2016). While this is an efficient strategy for studies
with finite resources, it is also a necessarily limited one
(see discussion of potential criticisms in Dudgeon
et al., 2010). In some cases, and potentially most, multi-
ple drivers act on systems simultaneously, increasing the
likelihood of abrupt changes (Ratajczak et al., 2018). This
includes the potential for repeated disturbances, poten-
tially interacting with a slow long-term driver pushing
the system into an alternate regime. Similarly, nonlinear
or tipping point transitions, and the persistence of subse-
quent new regimes, are often controlled by processes in
the broader ecological or social–ecological systems
(Filbee-Dexter et al., 2018). Thus, understanding and
observing more components of a system than only the
expected driver and response variables can provide
important insights into the nature of those transitions
and potential mechanisms of resilience. Bestelmeyer
et al. (2011) have identified certain key components for
studies of tipping points (at least in a temporal context),
which include long time series with data on biological
responses, environmental drivers, and environmental
context, with a recognition that “context is critical.”
Effective studies of tipping points and regime shifts, par-
ticularly if they hope to provide general insights with
broad applicability, need to find strategies to collect these
types of broad and rich datasets, which is likely to be a
substantial challenge.

Large observational networks could provide a
uniquely effective setting for identifying thresholds and
tipping points in complex environmental systems. This
idea has been discussed since the early 2000s in the con-
text of social–ecological systems (AC-ERE, 2009) and
forecasting ecological changes (MacMahon, 2006). With
standardized protocols, long-term monitoring, and broad
coordinated sampling of a range of biophysical parame-
ters, NEON is well situated to support efforts that exam-
ine and predict tipping points and regime shifts. While
the potential of the NEON framework to contribute to
ecological transition theory and applications has been
recognized (Jordan et al., 2007), NEON data and monitor-
ing protocols have only recently reached full operation
and have not yet been used to build understanding of
ecological tipping points. At the time of this paper, a Web
of Science search for “NEON” and ecological terms
related to tipping points (e.g., “stable state” and “thresh-
old”) did not return any results, indicating this opportu-
nity to use NEON in relation to tipping points’ literature
has yet to be fully realized. We believe this is largely due
to the relatively recent establishment of NEON, and to a
lesser degree the lack of explicit research agenda, as the
NSF long-term ecological research program (NSF-LTER)
has shown how other long-term monitoring efforts can
yield important insights about tipping points (Zinnert
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et al., 2021). In the hope of motivating research focused
on tipping points and regime shifts using the resources of
NEON, we briefly review several types of ecological tran-
sitions and then discuss the capacity, challenges, and
strengths of NEON and NEON data to investigate such
transitions.

A PRIMER FOR UNDERSTANDING
TIPPING POINTS AND REGIME
SHIFTS

Tipping points are critical thresholds, generally of some
environmental driver (e.g., precipitation, nutrient levels,
or disturbance frequency), where systems change
abruptly from one state (e.g., the particular composition
and abundances of species or functioning of the system)
to another with its own self-reinforcing feedbacks
(Moore, 2018). Tipping points may occur across both spa-
tial (Reyer et al., 2015) and temporal scales (Clements &
Ozgul, 2016; Lindegren et al., 2012) and have been
described in a variety of ecosystem types including coral
reefs (Mumby et al., 2007; Muthukrishnan et al., 2016),
forests (Hirota et al., 2011; Staver et al., 2011), freshwater
ecosystems (Carpenter et al., 2011; Scheffer et al., 1993),
and rangelands (Kefi et al., 2007), and are likely occur in
some fashion in most ecosystems. In addition, tipping
points occur in systems across a broad range of spatial
scales (Reyer et al., 2015), from small ponds to planetary
processes (Barnosky et al., 2012; Lenton et al., 2008).
While regime shifts are believed to occur disproportion-
ately faster in larger systems (Cooper et al., 2020), rapid
change in smaller systems or across smaller scales is still
quite common (Clements & Ozgul, 2016; Kramer &
Drake, 2010). Understanding the role of spatial scale in
regime shifts and in particular how and when local-scale
processes can propagate to system-wide transitions
remain important questions (Michaels et al., 2020).
Regime shifts can occur in a number of different ways,
and we describe three particular cases below (linear,
phase shift, and alternate stable states; Figure 1). Dis-
criminating between these scenarios can be important
both to provide insight into the mechanisms that struc-
ture the system and to better inform effective manage-
ment to prevent unwanted transitions or restore
degraded systems (Suding & Hobbs, 2009).

The simplest transition between system states is a
smooth or “linear” shift (Figure 1a). While there does not
need to be a strictly linear relationship between environ-
mental drivers and system state, it is a smooth relation-
ship such that incremental changes in environmental
conditions cause corresponding incremental changes in
the system state (e.g., abundance or percent cover of a

key community member). This type of transition likely
indicates that changing environmental conditions push
the system away from or toward the optimal conditions
for some member of the system, which shifts species’ rel-
ative abundances. Importantly, this type of transition
occurs without a true tipping point, but a rapid commu-
nity shift can occur if an environmental driver itself
changes abruptly pushing the system to a different state.
This would produce a change that appears to be
nonlinear, but the fundamental relationship between
driver and system state is still linear and no early warn-
ing signals would be observed (Dakos et al., 2015).

Alternatively, systems can respond nonlinearly to
changing environmental conditions. Regime shifts can
occur when relatively minor changes in environmental
drivers push the system over a critical tipping point. As
systems cross these tipping points, the change in system
state is much larger than would be expected from the
magnitude of change in the environmental driver
(Scheffer, 2009). Tipping points can be observed in two
types of systems: systems in which a single equilibrium
state exists for any given environmental condition
(Figure 1b) and systems with the potential for multiple
stable equilibria (Figure 1c). Tipping points in systems
with a single equilibrium state at every environmental
condition are associated with environmental constraints
on species, such as their physiological limits (e.g., coral
bleaching and mortality in response to elevated water
temperatures; Hoegh-Guldberg, 1999) or the environ-
mental conditions where the competitive dominance of
different species flips, allowing for the competitive exclu-
sion of a species (e.g., plant zonation along salinity gradi-
ents; Emery et al., 2001; Levine et al., 2003) and a sharp
change in relative abundances. Systems with multiple
stable equilibria are likely to have strong positive feed-
backs and high connectedness between components,
such that shifts are propagated or accelerated by internal
mechanisms (Scheffer et al., 2012). When the system
crosses a tipping point, it shifts to an alternate regime
with its own set of self-reinforcing processes that draw
the system toward the new equilibrium state (Folke
et al., 2004; Scheffer et al., 2001). For example, in semi-
arid grazing systems the presence of plants above a criti-
cal abundance can also increase rates of water infiltration
supporting continued increases of plant abundance and
pulling the system toward a vegetated state (Rietkerk &
van de Koppel, 1997). These mechanisms also make the
system resistant to recovery such that the tipping point
for the system to return to its initial condition is different
from the first tipping point (i.e., the system exhibits hys-
teresis; red circles in Figure 1c). As systems approach tip-
ping points, theory indicates that they may present a
number of potential “early warning signals” such as
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critical slowing down, increased variance, and spatial
autocorrelation that are generally associated with a
breakdown in the processes that pull the system back
toward its stable equilibrium state (Dakos et al., 2015).

Finally, a change in system state may be triggered
either by internal or external drivers. External drivers can
initiate a regime shift by shifting conditions to a point
where a different community member is able to establish
or become dominant (or equivalently where a current
dominant species is no longer able to persist). For exam-
ple, shifts in precipitation have driven transitions
between vegetated and desert regimes in the Sahara and
Sahel (Foley et al., 2003). An internal component of the
system can also naturally, or stochastically, move beyond
a critical threshold such that feedback mechanisms can
no longer return the system to the prior equilibrium state
or they accelerate the system toward an alternate state.
This can be seen in systems with Allee effects where the
likelihood of extinction increases when a population
drops below a critical threshold (Kramer & Drake, 2010).
Alternatively, bark beetles have been empirically demon-
strated to reach an outbreak threshold in western US for-
ests when the beetle population size is large enough to
overwhelm constraints otherwise imposed by stand-level
composition and configuration of host tree species (Raffa
et al., 2008). This outbreak threshold demarcates the dif-
ference between endemic beetle populations, where bee-
tles reproduce in and kill only weakened trees, and
epidemic populations, where beetles cause widespread
mortality even to trees that would otherwise be resistant
in nonoutbreak conditions.

To be able to characterize, detect, and forecast tipping
points in systems with regime shifts, several challenges
need to be addressed. First, baseline data are needed to
identify “normal” variability, expected relationships
between change in drivers and state variables, or changes
indicative of coming tipping points. Second, coordinated
measurements of both drivers and responses within a

given system remain uncommon, particularly at the spa-
tial and temporal resolution necessary for prediction or
anticipation, except in specific studies designed to collect
data related to tipping points (e.g., Wilkinson
et al., 2018). Even in these studies, environmental data
collection is generally focused on a limited number of
parameters expected to be relevant to the transitions or
mechanisms being considered. Limited effort is expended
on other potential drivers for transitions, such that it is
generally not possible to exclude alternate explanations
that unobserved factors drove a transition in a linear
manner (see Dudgeon et al., 2010). Finally, contingencies
and ecosystem details play a significant role in whether
and when those systems undergo major transitions, and
thus, there is a need for system or even site-level patterns
to evaluate early warning signs (e.g., critical slowing
down and increasing variance; Turner et al., 2020).

Here, we discuss the potential use of NEON and the
variety of data products being produced to identify or pre-
dict ecological tipping points, and we propose a series of
recommendations for evaluating and anticipating
nonlinear ecological change within systems. Specifically,
we provide recommendations to bridge the gap between
NEON resources currently available and the data needed
to fully investigate the dynamics of tipping points. Devel-
oping a framework for using NEON resources to under-
stand, evaluate, and predict tipping points in previously
stable or increasingly unstable ecosystems will be crucial
to anticipating future widespread or potentially irrevers-
ible ecological change and to guide the management of
those systems.

USING NEON TO STUDY TIPPING
POINTS IN NATURAL SYSTEMS

NEON’s consistent tracking of a variety of community
variables under a standardized monitoring protocol over

Environmental driver
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Environmental driverEnvironmental driver Environmental driver

Linear shift Phase shift/threshold Alternate stable states/hysteresis(a) (b) (c)

F I GURE 1 Different potential relationships between environmental drivers and system states. In systems with a linear relationship (a),

a rapid transition can only occur if the environmental driver also changes rapidly. In systems with phase shifts (b) or alternate stable states

(c), rapid changes in community state can occur with a small change in the environmental driver at the tipping points
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the organization’s 30-year time horizon creates the
opportunity to capture transitions when they occur across
a number of systems and scales (Keller et al., 2008).
These data are particularly useful for unexpected transi-
tions, which would not otherwise have a monitoring plan
in place to capture them. Much of the previous work dis-
cussing ecological transitions in natural systems has iden-
tified tipping points by tracking biotic and community
parameters and identifying periods of rapid change in
time series. However, if relevant environmental factors
are not measured in tandem, this strategy is incompatible
with identifying the underlying drivers of ecological tran-
sitions or elucidating the relationships between those
drivers and the biotic variables of interest (Dakos
et al., 2015). An additional challenge for identifying tip-
ping points from observational data is that tipping points
are often a result of the complexity of ecological systems
(i.e., a large number of species and their interactions;
Moore, 2018) and complex, community-wide data may
not be collected in studies targeting a specific ecological
outcome. NEON can help meet these challenges by col-
lecting a wide range of data that allows us to look at the
role of and covariance between environmental drivers
and community patterns by capturing both of these vari-
able types concurrently with standardized approaches.
With the timescale of the NEON project and the diversity
of data that are collected, it is feasible to generate a base-
line for spatial variance and heterogeneity at multiple
scales in both environmental and community parame-
ters, allowing us to identify deviations from those base-
lines. This wealth of data can also be used to develop and
parameterize models for predicting future change and
state shifts.

NEON and the role of scale in ecological
tipping points

A variety of systems with potential ecological tipping
points are encompassed within NEON sites (Figure 2).

The ability to use the NEON infrastructure to identify
and study these tipping points depends on a match
between collected data and the spatial and temporal
scales necessary to observe ecological dynamics and tran-
sitions. Already, some NEON data have been collected in
ecological contexts where transitions are more rapid or
can be observed from spatial signatures rather than time
series, making these datasets feasible for tipping point
detection. Examples of fast time series include microbial
communities in managed landscapes, lake or river water
quality, soil N cycling, and infectious disease (e.g., Lyme
disease in ticks), and spatial patterns can be seen in the
establishment of vegetation in arid ecosystems or woody

encroachment into grasslands (Figure 2, within the blue
dashed box). However, the ecological dynamics that are
relevant to tipping points in many systems of interest
operate on longer timescales or across large spatial scales,
such as fire-catalyzed transitions among forest communi-
ties and ecosystem-level impacts from bark beetle out-
breaks in western North America, as well as the resulting
implications for coarse woody debris and carbon dynam-
ics (Figure 2, outside the blue dashed box). The current
extent of NEON data is unlikely to be sufficient to evalu-
ate tipping points in systems where regime shifts occur
across broader spatial and temporal scales. However,
time series will expand over the planned lifetime of
NEON, increasing the potential of observing shifts in a
larger variety of ecosystem types. Additionally, many
datasets currently exist at or near NEON core sites
(e.g., satellite data) that could be used to expand the spa-
tial or temporal scope of NEON data.

A tipping point research agenda for NEON

The combination of NEON’s extensive and site replicated
datasets, as well as the strong research community utiliz-
ing NEON data, provides an opportunity for progress on a
number of challenges that could inform the science of tip-
ping points and nonlinear ecological dynamics more gen-
erally. At minimum, there are a variety of specific systems
included in the NEON design (e.g., lake plankton commu-
nities, woody encroachment in grasslands, and insect pest
epidemics) that may potentially display tipping points and
capturing these dynamics with established methods would
be valuable as additional examples of nonlinear systems
(Moore, 2018). A number of these contexts are listed in
Figure 2 and the “Approaches for identifying tipping
points in different data contexts” section, but these sugges-
tions are not exhaustive as we hope other researchers will
identify additional contexts of relevance based on their
own experience. In addition, we have identified several
specific research areas where tipping point-related concep-
tual and methodological advances could be achieved
using NEON.

1. Evaluation and processing of high-throughput
ecosystem sensor data: NEON sites include auto-
mated sensors for both terrestrial (e.g., carbon flux)
and aquatic (e.g., water chemistry and chlorophyll A)
ecosystem parameters. Automated processing of data
streams and identification of either community shifts
or early warning signals of such shifts remains a sig-
nificant challenge.

2. Linkages between multiple ecosystem compo-
nents: The coordinated measurement of a broad suite
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of ecosystem parameters (including in some cases
colocated aquatic and terrestrial sites) provides ideal
circumstances for evaluating if and how nonlinear
transitions in certain ecosystem components influence
each other and whether tipping point dynamics are
propagated or smoothed across components. Addi-
tionally, the coordinated measurements allow for the
identification of leading and lagging indicators of
regime shifts.

3. Analysis of aerial images to identify sharp transi-
tions: NEON collects extensive high-resolution aerial
imagery of all sites, and strong spatial patterning with
discrete boundaries can be a characteristic indicator of
systems with nonlinear dynamics. However, algorith-
mic or automated image analysis in ecological con-
texts is a difficult process that requires continued
research effort.

4. Analysis of remotely sensed data to identify indi-
viduals, species, and environmental conditions:
NEON collects extensive remote sensing data on sites,
with the added ability to conduct substantial ground-
truthing efforts. These data can potentially be inter-
preted to provide a range of derived datasets (species
identity, tree abundance, water availability, etc.) that
can be used to monitor spatial or temporal tipping
points.

5. Multisite comparisons: The network of NEON sites
allows comparison of systems that experience similar,
but slightly varying, weather or climate events creat-
ing opportunities to evaluate tipping points with
stressors of different durations or magnitudes
(Ratajczak et al., 2017). Alternatively, if different sites
experience similar conditions, the identification of tip-
ping points across systems can provide robustness to
analyses and predictions.

6. Large-scale environmental gradients: The range of
NEON sites spans large gradients of environmental con-
ditions. This provides the potential to identify disconti-
nuities in the frequency distribution or the presence of
community states across different environmental condi-
tions (Figure 5). Differences in tipping points in response
to changing environmental conditions (e.g., climate
change and nutrient enrichment) can also be evaluated
across the range of conditions to understand how they
are influenced by the broader environment.

Assessing tipping points using NEON

Tipping points can be identified in empirical systems
in a number of ways and utilizing different types of
data. Here, we present a set of approaches for

F I GURE 2 Temporal and spatial scales for the natural range of variability (NRV) of key ecological processes that could undergo regime

shifts at particular NEON sites. Location of individual boxes represents the timescales likely needed to observe shifts and the spatial extent

over which they are likely to occur
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identifying tipping points that can be applied to data
being collected by NEON. Because of the nature of the
NEON monitoring scheme, we focus on approaches
that utilize only observational data as opposed to
experimental methods (e.g., Petraitis et al., 1999). In
observational data, tipping points manifest as a set of
characteristic patterns, and here, we describe the
expected patterns in different types of data that would
indicate a regime shift or a more linear response to
changing environmental conditions. We will focus on
the general scenario of regime shifts with environmen-
tal (abiotic) drivers that produce shifts in the biotic
community that can be measured as the abundance of
particular community members as this is a common
scenario and likely relevant to many NEON users.
However, conceptually, tipping points could occur in
other response variables, such as ecosystem functions,
and be evaluated in an analogous manner with metrics
other than population abundance. We focus on three
data contexts in particular: time series, spatial patterns,
and frequency distributions of community states across
environmental conditions.

The most common approach for identifying tipping
points is monitoring of state parameters (e.g., community
composition and abundances of individual species) and/or
observing a dramatic shift in the state of the system
(Andersen et al., 2009; Lees et al., 2006; Schröder
et al., 2005). However, this is conceptually insufficient to
identify a regime shift because it ignores the role of exoge-
nous drivers. Substantial changes in a community follow-
ing a disturbance, such as a major storm or disease
outbreak, do not necessarily indicate a tipping point, even
if such a notable discontinuity would be identifiable in a
time series. The change could simply be a predictable and
linear response to a strong driver, which is well within the
dynamics expected for a system, and community recovery
would be expected if the driver returned to baseline condi-
tions. A lack of recovery or continued shift toward an alter-
nate attractor after the disturbance would be stronger
evidence for the presence of a tipping point. A major,
nonlinear change in the state of a system (e.g., abundance
of a dominant species) generally needs to be coupled with
either a trivial or linear change in an external driver in
order to show that the state change was not simply a
response to a major environmental shift. However, access
to coordinated community and environmental data is rare,
and thus, the approaches we present can be limited in their
application. But NEON, with the establishment of large-
scale and consistent monitoring efforts, presents a unique
opportunity to utilize colocated time series data on multi-
ple community and environmental parameters and drasti-
cally expand approaches to evaluating tipping points in
natural systems.

Approaches for identifying tipping points
in different data contexts

Time series

Time series, or temporal data, are the most straightfor-
ward data that can be used to identify tipping points. Tip-
ping points in time series appear as a rapid shift in
community composition (or any relevant response met-
ric) that then persists at the new level, rather than
returning to the original baseline (Scheffer &
Carpenter, 2003). In addition, the community response
should be out of proportion with changes in environmen-
tal drivers, particularly at the point of transition
(Figure 3). At larger temporal scales, there may be a gen-
eral correlation between community and driver such that
the separate regimes are aligned with different levels of
the driver, but at the transition point, the community
response will be out of proportion to the environmental
change. Additionally, the temporal signature and align-
ment of community state and environmental drivers can
be useful in discriminating between different types of
transitions; for example, later recovery (due to hysteresis)
will distinguish phase shifts (Figure 3b) from alternate
stable states (Figure 3c). Time series are also the type of
data most likely to be well suited for the evaluation of a
variety of early warning signal metrics such as increased
autocorrelation or critical slowing down (Dakos
et al., 2012).

Detecting regime shifts in an ecosystem over time
necessarily requires extensive time series, ideally with
high temporal resolution, both to detect the shift and
subsequent stability. Most plot-based or sensor-based
NEON data products from individual sites lend them-
selves to time series analyses. Data collection began at
most NEON sites within the last 5 years; while 5 years is
longer than many ecological studies, in many cases it is
still limited for the detection of change in an ecosystem
state over time. Thus, communities or ecosystem states
with rapid turnover times would be best suited for the
detection of tipping points over time within the data cur-
rently available from NEON. Many aquatic communities
(particularly planktonic) often display such rapid
changes, and these communities are more likely to be
monitored via in situ sensors, which can monitor the
community with high temporal resolution, alongside
automated monitoring of environmental conditions.
Thus, the datasets with the potential to observe tipping
point on the shortest timescales are NEON’s measure-
ments in streams, lakes, and rivers that include collection
of macroinvertebrates, micro- and macroalgae, aquatic
plants, and microbes. On longer timescales, but well
within the expected lifetime of NEON, measures of
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biomass and diversity of terrestrial plant communities,
invertebrates, and small mammals may also be useful
datasets to identify tipping points.

Microbial communities in particular present an
opportunity for exploring tipping points on a shorter
timescale, but also present their own challenges. Change
and turnover are extremely rapid, creating the possibility
of major changes in communities over very short time
periods, but the same characteristics may create noisier
data, making it more difficult to identify relevant pat-
terns. NEON monitors microbial communities in terres-
trial soils as well as aquatic systems; looking for regime
shifts over time in these communities could be fruitful,
particularly at the functional level, or higher taxonomic
levels, where noise could be reduced.

Spatial patterns

Identifying tipping points via spatial patterns is largely
analogous to the approach for time series except that
changes in, and correlations between, environmental
drivers and community response variables are observed
along spatial gradients. Rather than shifts occurring at a
point in time with a fast transition to a new state, the

change happens over a narrow spatial extent. This gener-
ally appears as a sharp boundary between community
states rather than a transition zone with community
types grading into each other. The most characteristic
pattern for a tipping point observed in a spatial context is
a system with a smoothly varying environmental driver,
and an overlying community undergoing a sharp transi-
tion. This is seen, for example, in the sharp zonation of
salt marsh plant communities as a result of both salinity
tolerance and competition (Pennings & Callaway, 1992).
Alternatively, systems with tipping points can display a
highly patchy pattern of community composition with
sharp boundaries and repeated transitions between
states, while underlying environmental conditions
remain largely homogeneous (Rietkerk et al., 2004, black
arrows in Figure 4). This pattern is expected when transi-
tions are largely driven by positive feedbacks between the
community and the local environment rather than a
larger underlying environmental gradient.

When evaluating tipping points via spatial patterns,
sharp community shifts by themselves are insufficient
evidence. Just as with a time series, changes in commu-
nity should be uncorrelated with any environmental
drivers at the point of transition. This can be evaluated
most readily in remotely sensed data of NEON sites that
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F I GURE 3 Examples of time series data displaying major community shifts under linear (a), phase shift (b), and alternate stable states

(c) dynamics. In all three scenarios, communities undergo rapid shifts; however, in the linear case (a) the environmental driver itself must

undergo rapid changes, as might be expected from a major disturbance. In contrast, both phase shift (b) and alternate stable states (c),

dynamics display tipping points that cause rapid community shifts with a smoothly varying environmental driver. While forward and

recovery transitions occur at the same tipping point for a phase shift (b), there are separate tipping points in alternate stable states (c), which

leads to a later recovery, only when the system returns past the second tipping point
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allow overlay of data layers for both community and
environmental variables. To identify a tipping point,
there should be significant changes in the community,
but environmental drivers should display more gradual
changes or potentially even be homogeneous. If the envi-
ronment itself presents sharp transitions, equivalent com-
munity shifts should not be taken as an indication of a
tipping point (the blue arrows in Figure 4 point to differ-
ent bands of plant assemblages that are a result of sepa-
rate soil layers exposed at different elevations along a hill
slope). This is a critical consideration, as the presence of
discontinuous drivers is also potentially more likely in
the spatial context than in a time series, as numerous

environmental factors may naturally have sharp breaks
or steep gradients (e.g., slope or altitude at a cliff face and
soil moisture in riparian zones).

NEON remote sensing data are particularly well
suited to detecting tipping points across space within a
site. At 1-m resolution and 10 � 10-km flight boxes,
NEON hyperspectral and lidar data products cover multi-
ple habitat types at most sites, at a resolution that is often
fine enough to capture individual plants. NEON RGB
camera imagery provides even higher resolution data, up
to 10 cm, and can supplement lidar and hyperspectral
data by detecting particular features on the landscape. A
number of projects are ongoing to process raw NEON

F I GURE 4 High-resolution aerial imagery of sites (here from the Konza Prairie site in eastern Kansas) can be used to observe spatial

patterns in community composition. In the image, we identify spatial features that reflect two different types of community shifts. The blue

arrows indicate larger bands of vegetation that follow contour lines on the hilly landscape and are associated with different soil layers that

can support woody vegetation. Black arrows indicate patchy distribution of shrubs within a band that arises from random establishment

followed by local expansion of individuals facilitated by their access to deeper water resources and ability to reduce fire potential (following

Ratajczak et al., 2011)
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remote sensing data and provide derived products, such
as tree crown delineation (e.g., Weinstein et al., 2020),
tree cover identified to species (e.g., Fricker et al., 2019;
Scholl et al., 2020), water availability (e.g., Chadwick
et al., 2020), and maps of soil conditions and plant foliar
chemistry (e.g., Chadwick & Asner, 2018). These efforts
will aid detection of step changes in state variables across
the landscape and will facilitate tipping points analysis
by providing more straightforward data on community
composition and relevant environmental parameters
than raw remote sensing data.

Distribution of community states across
environmental conditions

Evaluating the distribution of communities in relation to
environmental drivers provides a third approach to evalu-
ating tipping points or regime shifts. This approach is con-
ceptually related to the spatial pattern approach described
above but does not focus on a spatial gradient of environ-
mental conditions in a specific location. Rather it utilizes
data from a much larger set of locations and looks for dis-
continuities in the frequency distribution or the presence
of community states across different environmental condi-
tions (Figure 5). In a system with phase shift or threshold
dynamics, there will be a sharp transition in the relation-
ship between environmental conditions and community
metrics rather than a linear relationship or a well-mixed
distribution (Figure 5b). However, a system with alternate
stable states has multiple basins of attraction, which pro-
duce bimodal or multimodal distributions of community
states in relation to an environmental driver (Figure 5c). In
these systems, internal feedbacks between the community

and environment push systems at intermediate community
states toward one of the attractors even when the driver sits
at an intermediate level, creating regions of increased den-
sity or frequency.

The pattern of community change across different
environmental conditions needs to be evaluated across a
broad range of conditions, which may not be available at
a single site. Thus, this approach is most amenable to
analysis across NEON, either at the site level or by
including data from multiple plots at a range of sites. In
contrast to detecting tipping points temporally, detecting
tipping points across varying environmental conditions
can take advantage of the broad distribution of NEON
sampling even in the early stages of data collection.
NEON data cover an extensive climate space (Schimel
et al., 2007), enabling detection of nonlinearity in
response variables over large gradients in temperature
and rainfall. Other environmental parameters, such as
soil chemistry, regional land use patterns, water quality,
or spatial structure, can also be assessed across the net-
work and may provide additional drivers that could pro-
duce regime shifts (Villarreal et al., 2018). However, with
this approach there is a risk of an uneven distribution of
driver values across sites. Such a pattern could itself pro-
duce a multimodal distribution of community states.
Thus, care needs to be taken so that sites provide an
even, or at least well-distributed, set of environmental
conditions.

SYNTHESIS

The establishment of NEON presents a unique opportu-
nity for the study of tipping points in ecological systems.
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F I GURE 5 Potential relationships between environmental conditions and community types that could be observed across NEON sites.

Environmental drivers can be a broad range of climatic (temperature and precipitation), geographic (latitude and altitude), biogeochemical

(soil or water chemistry), or anthropogenic (distance to roads or cities, nearby land use patterns) parameters. Community metrics are any

variable that could reflect an aspect of community composition, particularly the prevalence of key community members (e.g., total biomass

or percent tree cover). Separate panels indicate different types of transitions and with no tipping point (a), a phase shift with a single tipping

point (b), or two tipping points and a bimodal distribution indicative of alternate stable states (c)
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The regular data collection of so many ecosystem proper-
ties across such a large range of locations is generally
unprecedented (Kao et al., 2012). This creates an oppor-
tunity to assess tipping points in a variety of ecosystems
and components of those ecosystems. While in many
cases NEON will not be able to act as a sentinel monitor-
ing system, providing a warning of when other systems
or locations are about to undergo a major community
shift, the strength of NEON lies in the amount of data
being collected which provides context for any particular
system or metric where a shift is observed. Some studies
have questioned the potential for research on tipping
points to provide predictions specific enough to make
useful management recommendations (Hillebrand
et al., 2020). But the unprecedented scale and nature of
NEON provides an opportunity for some of the most
complete evaluations of ecological dynamics available to
researchers. As a result, tipping point identification can
be more nuanced and robust because of the number of
potential drivers that can be monitored in coordination,
including both on-the-ground measurements and
remotely sensed data. This can help exclude alternative
explanations relating to potential external drivers that
may undergo major shifts themselves. Even in research
programs explicitly studying tipping points, the number
of environmental drivers or covariates that can be feasi-
bly monitored is limited, but the broader mission of
NEON allows for extensive effort even if it is not clearly
relevant to tipping points. The ability to continue moni-
toring over a long time period (minimally 30 years) will
provide exceptional baselines to recognize natural vari-
ability and extended opportunities to observe tipping
points. This richness of data around a tipping point may
also allow researchers to study tipping point dynamics in
real systems to refine and test theory that can be applica-
ble to other systems. Similarly, the coordination of
remote sensing and ground-based data can be used to
develop remote sensing proxies for community measures
that in turn can be used at broader scales and provide
more effective sentinel monitoring opportunities.

Linking NEON with other datasets

Because tipping points and regime shifts in natural systems
can occur across a broad range of scales, there may be limi-
tations in some cases to evaluating them only with NEON
data (see Figure 2). Continued collection of data by NEON
will extend the length of time series and partially mitigate
these limitations and the spatial extent of data can be
expanded by linking NEON data to broader datasets being
collected at or near NEON core sites, such as from NSF-
LTER sites that are colocated with NEON sites. These

additional datasets can be used to create envelopes of the
historical natural range of variation, or at least a longer
ecological record, for many key parameters needed to
address tipping points. For example, data on tree
populations and growth parameters exist for several of the
forested NEON terrestrial sites (e.g., Harvard Forest in the
Northeast Domain and Niwot Ridge in the Southern Rock-
ies and Colorado Plateau domain), with some extending
back in time to the 1940s (e.g., the Wind River Experimen-
tal Forest in the Pacific Northwest domain). Other moni-
toring networks, such as the AmeriFlux network (for flux
tower sites), the PhenoCam network (a set of digital cam-
eras used to track plant phenological patterns), and the
USFS Forest Inventory and Analysis program can be com-
bined with NEON efforts to expand the spatial scale of
available data for some metrics and a number of efforts are
underway to connect these data streams (Hufkens
et al., 2018; Novick et al., 2018; Richardson et al., 2018).
Similarly, high-resolution aerial or satellite imagery can be
acquired from a variety of sources and analyzed using
approaches developed around NEON data to extend ana-
lyses based on spatial patterning.

Linking site-level NEON instrumental data streams
to broader landscape patterns can also extend spatial
inferences about tipping points. For example, plot data
within the footprint of NEON forested domains could
be placed in a broader landscape context in a spatially
explicit manner to better understand spatial dynamics
of ecological drivers and responses and explore land-
scape indicators of tipping points (e.g., patch size or
shape of disturbed area). In addition, NEON data can
be linked across sites in ways that may provide unique
insights. In particular, the near or actual colocation of
terrestrial and aquatic sites (where possible) provides
an opportunity to test linkages across ecosystems in
the realm of tipping points (Creed et al., 2018). Colo-
cation may allow for new ways of testing how changes
in terrestrial processes (e.g., nutrient cycling) can lead
to tipping points in connected aquatic streams, rivers,
and lakes. Because of the complexity and interdisci-
plinary nature of such studies, NEON may provide a
rare opportunity to study the effects and responses of
cross-system drivers at significant scales.

Ecosystem models and early warning
systems to identify tipping points

In this review, we focus on identification of tipping
points retrospectively and suggest methods for recogniz-
ing regime shifts that have already happened in datasets.
However, a critical challenge that remains is the need to
identify when systems are approaching a tipping point,

ECOSPHERE 11 of 16



particularly if that can facilitate preemptive actions
(Hughes et al., 2013). Ecosystem models are crucial tools
for predicting future ecological changes, but lack of
robust ecological input data can limit their predictive
ability. Predicting abrupt or long-term ecological change
is challenging; future conditions are unrealized and
directional climate change complicates projections of
future ecological functioning, which may impede model-
informed conservation or land management policies
(Beckage et al., 2011; Bonan & Doney, 2018). Process-
based models can mechanistically represent ecosystem
functioning over millennia (Kelly et al., 2016), and the
use of millennial-scale records within a mechanistic
model has elucidated long-lasting biogeochemical lega-
cies (Bartowitz et al., 2019; Hudiburg et al., 2017). Simi-
larly, increased ecological data availability may help
decrease parameter uncertainty in ecosystem models,
leading to more accurate simulations (Fisher &
Koven, 2020). Field data-model fusion is an essential
tool to improve understanding of ecological functioning
(Peng et al., 2011) and is a backbone to frameworks for
early warning systems or signals (EWS). Current EWS
frameworks for biodiversity loss use on-the-ground data
with models to better understand and quickly show
areas that are vulnerable to or are in the initial stages of
biodiversity loss (Barnard et al., 2017). An EWS frame-
work could be expanded using NEON data to inform
predictive ecological models and could be an important
tool to predict abrupt tipping points across space and
time. Additionally, the extent of data collected by NEON
may serve as a useful basis for developing theory around
tipping points and EWS that can further refine their effi-
cacy. The large spatial and (continuingly increasing)
temporal range of NEON data makes it well suited to
use for predictions of ecological tipping points that
could influence conservation and landscape manage-
ment decisions and policy.

Tipping points and ecological forecasting

The value of NEON’s repeated, standardized sampling
for near-term ecological forecasting is well recognized
(Dietze et al., 2018), and enabling forecasting was an
explicit goal in the design of the NEON project
(Schimel et al., 2007). The coordinated nature of sam-
pling numerous ecosystem components is particularly
valuable for forecasting models because they can con-
sider potential linkages and their consequences. Non-
linearity in response variables presents a major
challenge for forecasting, but is therefore one of the
most valuable components to capture in ecosystem
models (Dippner & Kröncke, 2015; Oliver & Roy,

2015). In developing models for iterative forecasting,
specifically targeting ecosystem components that are
likely to exhibit nonlinear responses can be a useful
approach to identifying and quantifying the most sensi-
tive variables, resulting in the most significant
improvements to models and frameworks. There is evi-
dence that efforts toward those ends are scaling up
across the NEON user community (e.g., with the
NEON Ecological Forecasting Challenge).

Social importance of tipping points in
conservation and management

Identifying tipping points in ecological systems, partic-
ularly when the systems provide valuable ecosystem
services or are under management, is an important
step in building support for management or conserva-
tion efforts. Minimally, this is true because systems
with tipping points are the strongest candidates for
preventative, rather than reactive, efforts as recovery
after the system has passed a critical threshold is sub-
stantially more challenging (Kelly et al., 2014; Selkoe
et al., 2015). Beyond that, management of systems with
tipping points is likely to be more effective in a social
context when managers and stakeholders understand
the implications of regime shifts and nonlinear dynam-
ics (Kerner & Thomas, 2014). Without an understand-
ing of an approaching tipping point, resource users
may be unwilling to take appropriate precautionary
actions based on the observation of past actions that
had little impact on the system. Based on those experi-
ences, it would be a reasonable inference that if past
disturbances had little or no impact on the system,
then future ones should not either. But such an
extrapolation would be fundamentally flawed in sys-
tems with a tipping point. In systems that have
already passed a tipping point, the particular dynamics
and shape (i.e., linear vs. hysteretic) of recovery path-
ways are also important to communicate clearly; com-
munity trust may be eroded if little response is
observed to even significant management interventions,
while they remain subthreshold. Managing expecta-
tions can help prevent pressure to abandon efforts
before they have had the opportunity to be successful.
While NEON itself is not designed to include or moni-
tor the effects of management efforts, the scale of
monitoring enabled by NEON data may provide sub-
stantial opportunity to develop general theory, inform
expectations, and enable broader communication with
stakeholders. That work can in turn be applied to
other social–ecological systems where management
efforts are more critical and/or contentious.
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CONCLUSIONS

The importance of tipping points and regime shifts in eco-
logical systems is becoming more apparent as anthropo-
genic influences continue to impact individual ecosystems
and the planet as a whole (Biggs et al., 2018). The potential
for planetary and climate tipping points makes this case
strongest of all (Barnosky et al., 2012; Lenton et al., 2019).
NEON provides an opportunity to study tipping points in
both systems where they can be easily studied to under-
stand basic dynamics and in specific systems where poten-
tial changes are of practical or conservation importance
(Figure 2). This allows NEON-based work to inform and
test the basic theory needed to address large-scale issues or
be transferable to a variety of other systems and to have
practical impacts on systems in need of specific insights
for conservation or management. While important chal-
lenges exist, the unprecedented scale and coordinated
nature of NEON research may lead to theoretical insights
and methodological advances related to tipping points
through an integrated assessment of regime shifts across
temporal, spatial, and environmental correlation domains.
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