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are reshaping our planet. We place these studies in 
the context of broader advances, and highlight addi-
tional research directions to uncover how altered fire 
regimes, fires interacting with other disturbances, and 
pre-and post-fire demographic processes can erode 
resilience in a warming climate.
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Introduction

Climate warming and associated increases in distur-
bance activity are driving profound shifts in terrestrial 
ecosystems worldwide. For example, direct effects 
of climate warming are increasing drought-related 
stress in forests, leading to widespread increases in 
tree mortality across all forested continents (Allen 
et  al. 2010, 2015). In many areas, warmer and drier 
conditions are also associated with decreases in tree 
recruitment (e.g., Andrus et  al. 2018), which are 
particularly important following severe disturbance 
(Coop et al. 2020). In addition to the direct effects of 
climate on ecosystems, many disturbances are highly 
climate-sensitive (Seidl et  al. 2017), and thus cli-
mate change can indirectly affect resilience by alter-
ing disturbance regimes to the point where they are 
no longer aligned with disturbance-adapted traits of 
dominant plants (Johnstone et al. 2016). Fire is among 

Abstract Extreme fire seasons in both hemispheres 
in 2019 and 2020 have highlighted the strong link 
between climate warming and altered fire regimes. 
While shifts in fire regimes alone can drive profound 
changes in plant populations, communities, and eco-
systems, the direct effects of warming climate condi-
tions can impose added stress on key demographic 
processes prior to and immediately following fire. 
Altered survival-, growth-, and reproductive- rates in 
periods between fires, coupled with post-fire recruit-
ment failure from increasingly stressful environmen-
tal conditions (including both heatwave and drought) 
can pose serious threats for conservation in fire-
adapted ecosystems worldwide, raising concerns of 
ecosystem conversion and state change. In this special 
issue, a collection of 11 papers from fire-prone eco-
systems in both hemispheres documents key insights 
into how changes are unfolding—and mechanisms 
underpinning such changes—across a diverse range 
of species and ecosystems. Here, we synthesize this 
work that uses latitudinal observational surveys, 
experiments, and simulation modeling to under-
stand how climate warming and altered fire regimes 
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the most climate-sensitive disturbances, as warm-
ing is associated with longer wildfire seasons (Jolly 
et  al. 2015), increases in area burned (Westerling 
2016), and greater burn severity (Parks and Abatzo-
glou 2020; Collins et al. 2021a)—all key dimensions 
of fire regimes that are changing and require better 
understanding (McLauchlan et  al. 2020). Fire activ-
ity is expected to increase well into the twenty-first 
century, even as prior fires reduce fuels and impose 
constraints on burned area (Abatzoglou et al. 2021)—
though current trends of increasing burn severity 
(e.g., plant mortality or organic material consumed) 
may attenuate and reverse as vegetation and fuel 
structures change (Parks et al. 2016). Collectively, the 
direct effects of climate warming on plant populations 
and communities, coupled with the indirect effects of 
climate warming on altered fire regimes, have raised 
concern worldwide for the resilience and conserva-
tion of terrestrial ecosystems (Millar and Stephenson 
2015).

Concerns about rapidly changing ecosystems in 
a warmer and more fire-prone future have catalyzed 
development of multiple frameworks conceptualiz-
ing resilience to fire (e.g., capacity to experience fire 
without shifting to an alternative state; cf. Walker 
et al. 2004). Fire-prone ecosystems that are adapted to 
severe fire via obligate seeding after fire-caused plant 
death may be particularly at risk of eroding resil-
ience, and have therefore been the focus of several 
recent conceptual advances. For example, the inter-
val squeeze presents a framework to test how short-
ened intervals between severe fires and both pre-and 
post-fire shifts in climate can erode resilience of ter-
restrial ecosystems to fire (Enright et al. 2015). John-
stone et  al. (2016) build on earlier concepts of bio-
logical legacies (Franklin et al. 2000), differentiating 
legacies into material (e.g., physical structures) and 
information (e.g., life-history traits) legacies that if 
misaligned with dimensions of climate space and fire 
regimes, can catalyze loss of resilience as ecosystems 
depart a safe operating space (Johnstone et al. 2016). 
This special issue presents 11 studies that test many 
of the dimensions presented in these and other frame-
works (e.g,. Hessburg et al. 2019; McLauchlan et al. 
2020)—using complementary approaches in observa-
tional, experimental, and simulation modeling studies 
to better understand the mechanisms of resilience in 
the face of climate warming and increasing fire. We 
organize our synthesis of this work along four themes 

where these studies expand on, or provide insights 
into, mechanisms identified in existing frameworks 
of resilience to fire. We close by presenting a series 
of new research directions that could further explore 
these themes and contribute understanding of addi-
tional mechanisms to build on existing frameworks.

Fire regimes and their changing nature

One focal thematic area in forecasting how cli-
mate warming is affecting ecosystems is building a 
mechanistic understanding of fire regimes and how 
they are changing over space and time. For exam-
ple, combined with changes in ignition patterns and 
land management following colonization and subse-
quent exclusion of Indigenous fire use (Kimmerer and 
Lake 2001), warming climate increases the likelihood 
of crossing of thresholds that control many aspects 
(e.g., size, frequency, severity) of fire regimes (Pau-
sas and Keeley 2021). Historical and contemporary 
fire regimes have been thoroughly explored in some 
regions (e.g., North America and Australia), yet many 
fire prone locations have yet to receive the same level 
of attention—leaving major geographic gaps in under-
standing the nature of some fire regimes. Franco et al. 
(2022; this issue) explore drivers of burn severity in 
Araucaria forests in Patagonia—an ecosystem that 
has intermixed fire-prone shrubland and fire-inhib-
iting forests. By testing relationships across scales 
ranging from individual trees to broader landscapes, 
they demonstrate an important dimension of under-
standing the Andean montane fire regime—scale-
dependent effects on burn severity. Strong local-scale 
constraints on burn severity that are dictated by fire 
resistant traits of dominant trees (in this case Arau-
caria araucana) can be overridden by broad-scale 
drivers such as extreme weather, and support findings 
in other systems (e.g., Belote et al. 2015). In addition 
to characterizing drivers of burn severity to continue 
building fundamental understanding of fire regimes, 
such findings contribute insight into how fires can 
catalyze positive feedbacks between vegetation mosa-
ics and burn severity via varying levels of flammabil-
ity and sensitivity to fire (Paritsis et al. 2015; Tepley 
et  al. 2018). Future work that incorporates the land-
scape patterns of burn severity (e.g., Cansler and 
McKenzie 2014; Harvey et  al. 2016b) and interac-
tions among multiple fires (Parks et al. 2014; Harvey 
et al. 2016a; Collins et al. 2021b) could build on this 
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mechanistic understanding of burn severity (Franco 
et al. 2022) to further understanding and tracking of 
fire regimes as they change in ecosystems around the 
globe (Prichard et al. 2017).

Demographic mechanisms underpinning resilience 
to fire

A relatively understudied dimension of how warming 
climate and altered fire regimes can erode resilience 
is the demographic processes underpinning popula-
tion persistence and post-fire recovery (Davis et  al. 
2018). For example, severe fire recurring over a short 
interval can lead to local post-fire regeneration failure 
for serotinous trees if the time between fires is insuffi-
cient to recover the canopy seedbank (i.e., immaturity 
risk, sensu Keeley et  al. 1999). While outcomes of 
this phenomenon have been observed following short-
interval fires across different ecosystems (Brown 
and Johnstone 2012; Turner et  al. 2019; Whitman 
et al. 2019), the demographic parameters (e.g., plant 
growth, survival, fecundity) that drive outcomes are 
less well understood. Quantifying cone or seed abun-
dance across a range of conditions pre-fire requires 
dedicated data to be collected across individuals and 
populations, necessitating much more time than is 
possible in many typical vegetation surveys. Further, 
understanding how reproductive traits such as seed 
dormancy that support demographic parameters can 
change over evolutionary time scales is an important 
dimension of understanding adaptive capacity in the 
face of rapid climate change.

In ecosystems characterized by stand-replacing 
fires, tracking demographic parameters and how they 
change over the inter-fire period is critical for under-
standing subsequent post-fire outcomes. Recent work 
in subalpine forests of North America has quantified 
cone production on individual trees in old-growth 
(i.e., several centuries after fire) (Andrus et al. 2020) 
and young post-fire (Turner et  al. 2007) stands. 
Incredibly valuable insights are born of such rigor-
ous cone measurements across large populations of 
established trees, though they present a snapshot in 
time of reproductive capacity if a disturbance were to 
occur, leaving the temporal development of this criti-
cal stage less well understood. In this issue, (Agne 
et  al. 2022) present data on cone abundance across 
a chronosequence of past stand-replacing fire across 
most of the geographic distribution for knobcone 

pine (Pinus attenuata) and bishop pine (Pinus muri-
cata) on the west coast of the USA. These two sero-
tinous species are adapted to a stand-replacing fire 
regime and demonstrate tremendous resilience to 
fire (Harvey and Holzman 2014; Reilly et  al. 2019), 
but given their short fire-return-intervals relative to 
other serotinous conifer forests in North America, 
are an ideal setting to test how immaturity risk var-
ies with fire interval (Keeley et  al. 1999). Taking a 
chronosequence approach allows for identifying the 
period of time where immaturity risk is greatest (very 
high < 10 years since fire and moderate 10–20 years 
since fire in this case), and how drought-related mor-
tality in inter-fire periods can lengthen the period of 
immaturity risk (Agne et al. 2022).

Beyond characterizing the temporal window of 
immaturity risk, how the period of immaturity risk 
varies spatially—and additional drivers of seed abun-
dance other than ontogeny—are critical factors for 
identifying locations and contexts at particular risk 
from fire-catalyzed loss of resilience. By modeling 
the regional distribution of the juvenile (i.e., repro-
ductively immature) period for a wide range of sero-
tinous obligate seeding species across southwestern 
Australia, Gosper et  al. (2022; this issue) contrib-
ute an important spatial dimension to understanding 
immaturity risk (Keeley et  al. 1999). Importantly, 
they demonstrate that the juvenile period is predicted 
to continue lengthening with further climate warm-
ing, extending the period of immaturity risk even if 
fire-return-intervals remain constant. Beyond time 
required to maturity, many other factors underpin 
reproductive capacity between stand-replacing fires—
yet such factors are often assumed to remain stable 
and dependable. For example, pollination by wind 
or insects is a key requisite for cone/seed production, 
but relative to ontological factors contributing to seed 
production, is poorly accounted for in most fire-prone 
ecosystems. Using simulation modeling, Souto-Veiga 
et al. (2022; this issue) test how the decrease in pol-
lination success observed in ecosystems worldwide 
might interact with other better-represented drivers 
in the interval squeeze (Enright et al. 2015). In sero-
tinous Banksia hookeriana shrublands of SW Aus-
tralia, they demonstrate how declining pollination 
success can qualitatively increase the likelihood of 
immaturity risk, as pollination limitation for flower-
ing serotinous species can erode the inter-fire seed 
accumulation rate. The findings by Souto-Veiga 
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et  al. (2022) raise important questions about how 
widespread this phenomenon may be in other sys-
tems where different modes of pollination could alter 
mechanisms of resilience to fire.

Demographic mechanisms underpinning resilience 
are also important to understand on evolutionary time 
scales. For a trait such as serotiny, the variability in 
space across the range of a species, as well as vari-
ability through time, may have critical consequences 
for alignment or misalignment of adaptations with 
current and future climate and fire regimes (John-
stone et al. 2016). Ladd et al. (2022; this issue) dem-
onstrate how variability in the fire regime—a key 
driver in variability in serotiny—differs across island 
populations and moisture gradients on the mainland 
of SW Australia, across the range of the serotinous 
native cypress pine, Callitris preissii. Serotiny level 
is greater in drier mainland locations with more regu-
lar fire than in wetter mainland and island populations 
where fire intervals are more variable and less pre-
dictable. Similar gradients of moisture across coastal 
and inland areas have been related to variation in 
serotiny in pines on the west coast of North America 
(Millar 1986a, 1986b) and demonstrate critical spa-
tial dimensions to fire adaptations within a species. 
Lamont (2022; this issue) explores pathways of how 
three classes of fire-adapted traits—fire resistance, 
fire-stimulated dormancy release, and rapid post-fire 
growth—are guided by different combinations of cli-
mate, associated fire regimes, and post-fire growing 
conditions. Using this historical lens through evolu-
tionary time scales is especially relevant when con-
sidering the pace of climate and fire regime change 
in the twenty-first century (Pausas and Keeley 2021). 
The conclusions by Lamont (2022) about the mis-
match between the times required for adaptation or 
mitigation vs the accelerating rate of global change 
have important implications for biodiversity conser-
vation worldwide.

Post-fire conditions as an important filter on response 
to fire

In addition to climate-driven changes to fire regimes 
and effects on key pre-fire demographic parameters 
that govern post-fire seed availability, environmental 
conditions after fire at different scales are an impor-
tant filter for vegetation response. Observational 
(Enright et  al. 2014; Harvey et  al. 2016c; Tepley 

et al. 2017; Stevens-Rumann et al. 2018), experimen-
tal (Hansen and Turner 2019), and modeling (Davis 
et al. 2019; Turner et al. 2022) work demonstrates the 
strong direct effects of climate on post-fire tree and 
shrub species seedling establishment. However, fewer 
studies have examined the role of post-fire vegetation 
dynamics between tree seedlings and shrubs/herbs 
(e.g., Harvey and Holzman 2014; Tepley et al. 2018; 
Werner et al. 2019), or focused more directly on the 
response of the plant community as a whole follow-
ing fire (e.g., Brodie et al. 2021).

One location of key interest for where post-fire 
conditions and vegetation dynamics may inhibit or 
promote ecosystem change is in transition zones (e.g., 
forest—grassland boundaries). Combining obser-
vational and experimental approaches, Brehaut and 
Brown (2022; this issue) test how wildfire might cata-
lyze poleward expansion of the boreal forest (Picea 
glauca) in Yukon, Canada as the climate warms—
which may be a potential outcome in a warmer and 
more fire-prone future (Batllori et al. 2017). Although 
fires create opportunities for forest expansion into 
tundra ecosystems, competition from tundra shrubs 
and more extreme microclimate conditions post-fire 
imposed constraints on Picea glauca establishment 
even when tree seed was available. Collectively, these 
factors limited post-fire expansion of forest into tun-
dra (Brehaut and Brown 2022). The effects of post-
fire community dynamics (Harvey and Holzman 
2014; Werner et al. 2019) and/or microsite conditions 
created by fire (Hoecker et al. 2020; Wolf et al. 2021) 
are emerging as an important, yet less understood 
dimension of how ecosystem conversions may unfold 
with future climate warming (HilleRisLambers et al. 
2013).

In forests and shrublands, the broader plant com-
munity response to fire and climate has received 
less attention than myriad studies about the domi-
nant woody vegetation (trees in forests and shrubs 
in shrubland); however, a much wider range of 
plant traits are represented across entire communi-
ties. Further, post-fire early seral plant communities 
may be sensitive indicators of change, often com-
prise much of the biodiversity in many fire-prone 
ecosystems (Swanson et al. 2011; Harvey and Holz-
man 2014), and contain many culturally important 
plants that were fostered by Indigenous burning 
practices for millennia (Kimmerer and Lake 2001). 
Across the range of conditions that burned in the 
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uncharacteristically severe 2014 wildfire season in the 
boreal forests of NW Canada, Dawe et al. (2022; this 
issue) tracked post-fire trajectories of the entire plant 
community over 5 years. Widespread differences 
between pre-and post-fire plant communities and tree 
species dominance, while somewhat expected via 
successional dynamics, may also be important early 
indicators of shifts toward dominance by post-fire 
vegetation communities better adapted to a warmer 
and drier future (Dawe et al. 2022). Beyond being an 
indicator of change, post-fire plant communities can 
also contribute to important feedback mechanisms 
that can accelerate changes to fire regimes (Tep-
ley et  al. 2018). For example, in Chile, Auraucaria-
Nothofagus forests that experienced high-severity fire 
were characterized by post-fire plant communities 
dominated by resprouting species and more flamma-
ble taxa than present pre-fire (Arroyo-Vargas et  al. 
2022; this issue). Such feedbacks of severe fire beget-
ting more flammable post-fire vegetation are espe-
cially important to understand as climate constraints 
to fire are lessened in a warmer future, and can enable 
better forecasting of where disturbance interactions 
may hasten ecosystem transitions (Lindenmayer et al. 
2011; Tepley et al. 2018).

Interacting drivers and compound responses

In addition to increasing disturbance activity gen-
erally as climate warms, multiple disturbances can 
also interact mechanistically and/or produce syn-
ergistic effects on ecosystems (Burton et al. 2020). 
For example, one disturbance can alter the likeli-
hood, size, or intensity/severity of a subsequent 
disturbance—a process termed linked disturbance 
interactions (Simard et al. 2011). With fires, linked 
interactions are often negative over short inter-
vals as one fire removes key necessary ingredients 
(i.e., fuel) for subsequent fires (Parks et  al. 2015; 
Harvey et  al. 2016a; Prichard et  al. 2017; Collins 
et al. 2021b), however positive links have also been 
observed (Lindenmayer et  al. 2011; Tepley et  al. 
2018). Whether or not two disturbances are linked, 
if coupled closely in time, they can produce com-
pound disturbance effects on ecosystem response 
if the mechanisms of resilience to disturbance have 
not fully recovered by the time of subsequent distur-
bances (Paine et al. 1998). Obligate seeding species 
are particularly vulnerable to compound disturbance 

effects when two fires occur in quick succession 
(Turner et al. 2019) or fire occurs soon after a biotic 
disturbance such as bark beetle outbreak (Harvey 
et  al. 2013)—two contexts where the first distur-
bance removes much of the necessary seed source 
required for tree establishment following a subse-
quent fire.

Two studies in this issue explore different dimen-
sions of how disturbance interactions can catalyze 
profound changes to ecosystems. Lindenmayer 
et al. (2022; this issue) build on an earlier concep-
tual model of ‘landscape traps’ (Lindenmayer et al. 
2011), whereby positive links between fires can lead 
to ecosystem collapse. Specifically, young post-fire 
vegetation recovering from fire is more flamma-
ble than older unburned forest, leading to a greater 
likelihood of subsequent stand-replacing fire in the 
mountain and alpine ash forests of SE Australia. 
Adding significantly to the risk of forest conver-
sion after fire is the reinforcing effect of increasing 
area and continuity of this highly flammable young 
post-fire vegetation, and increasing immaturity risk. 
While the effects of post-fire drought on obligate 
seeding species have been documented in many 
forests (Enright et  al. 2014; Harvey et  al. 2016c; 
Tepley et  al. 2017; Stevens-Rumann et  al. 2018), 
resprouting species have been less fully explored, 
and are generally expected to be more buffered 
from compound disturbance effects, or even bene-
fit from disturbances occurring in rapid succession 
(Kulakowski et al. 2013). Bendall et al. (2022; this 
issue) investigated the interactive effects of drought 
and fire on net post-fire density of juveniles (i.e. 
surviving resprouts plus new seedling recruits) in 
wet versus dry eucalypt forests, eastern Australia. 
They found that severe drought increased juvenile 
mortality by up to 15% and was a more important 
driver of change than was frequency and severity of 
recent fire. Further, while overall juvenile numbers 
declined after severe drought in wet eucalypt forest 
sites, they increased in dry forest sites, potentially 
reflecting differences in competitive interactions 
and in the various drivers of seed availability at the 
time of fire. They concluded that, although shifts in 
stand attributes were not occurring quickly, further 
climate change to a more drought- and fire-prone 
future may pose a threat to persistence of these for-
est types.
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Conclusions and future directions

Continued climate warming and associated increases 
in fire activity are likely to profoundly affect the resil-
ience of plant populations, communities, and eco-
systems worldwide. The collection of studies in this 
special issue highlights many dimensions of how 
these changes are already unfolding across continents 
in both hemispheres, and identifies key mechanisms 
that underpin these changes now and into the future. 
Some changes will arise from climate-driven altera-
tions to different dimensions of fire regimes, such as 
increases in severity that are governed by the com-
bination of fire behavior and fire-adaptive (or sensi-
tive) plant traits (Franco et al. 2022). Other changes 
will emerge when shifting fire regimes interact with 
key demographic and community dynamics pre-fire 
(Agne et  al. 2022; Gosper et  al. 2022; Souto-Veiga 
et al. 2022) and post-fire (Arroyo-Vargas et al. 2022; 
Dawe et  al. 2022; Brehaut and Brown 2022); some 
occurring over evolutionary time scales (Lamont 
2022; Ladd et  al. 2022). Finally, some changes will 

emerge as surprising outcomes from disturbances 
interacting in a linked (Lindenmayer et  al. 2022) or 
compound (Bendall et  al. 2022) manner. The find-
ings in these studies also highlight new dimensions 
that expand on existing conceptual frameworks (e.g., 
Enright et  al. 2015; Johnstone et  al. 2016) to build 
further insight into mechanisms of ecosystem change 
in a warmer and more fire-prone future (Fig. 1). Here, 
we explore some of those future directions, focusing 
specifically on the four main dimensions of the stud-
ies that comprise this special issue.

Demographic processes during inter-fire periods

Species that store mature seeds in various structures 
can routinely build the available seedbank from near 
zero immediately following fire to levels sufficient to 
support resilience to fire after some time (Agne et al. 
2022). However, temporal variability (specifically 
reduction) in seed production during inter-fire periods 
(Redmond et  al. 2016; LaMontagne et  al. 2021) via 
masting, and untimely cone opening and subsequent 

Fig. 1  Four key dimensions of how fire and climate warm-
ing are altering ecosystems in the papers comprising this spe-
cial issue (left column), and corresponding future research 

directions for additional insights in these dimensions that can 
expand on existing conceptual frameworks (e.g., Enright et al. 
2015; Johnstone et al. 2016) (right column)
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seed release/leakage, can affect seedbanks during this 
critical window of time. Understanding the mecha-
nisms that deplete the seedbank, once formed, are an 
important additional dimension of exploration. When 
post-fire populations are sparse, plants can produce 
more cones/seeds per individual, potentially buffering 
otherwise slower seedbank accumulation assumed 
from the number of mature plants alone (Turner et al. 
2007; Agne et al. 2022). However, the limits to these 
compensatory responses (e.g., a single tree is fixed in 
one location and can only produce so many cones) 
may not fully make up for lower numbers of cones/
seeds that would be present with a larger population 
of mature individuals. Seed production in fire-adapted 
structures that depends on pollinators (Souto-Veiga 
et al. 2022) may be drastically impacted by declines 
in pollinating animals (Potts et al. 2010)—highlight-
ing the importance of exploring this mechanism fur-
ther. In sum, there remains myriad dimensions of 
mechanisms underpinning the buildup and depletion 
of seedbanks in inter-fire periods that require addi-
tional exploration.

Altered post-fire outcomes in a shifting climate

Post-fire, a critical demographic parameter often of 
focal interest is the recruitment and survival of young 
seedlings (Stevens-Rumann et  al. 2018; Davis et  al. 
2018, 2019). Short-interval fires that are followed by 
drought can quickly erode resilience via compound-
ing effects of successive fires and stressful environ-
mental conditions (Whitman et  al. 2019). However, 
fires themselves can add compounding environmen-
tal changes (via consumption of moisture-retaining 
litter or shade-producing above-ground structures), 
thereby affecting seedling mortality (Hoecker et  al. 
2020; Wolf et al. 2021). Disentangling how post-fire 
vegetation dynamics are affected by external drivers 
(e.g., broad-scale drought) vs. fire-induced changes 
in local microclimate is a key research frontier. Fur-
ther, contrasting outcomes of post-fire interactions 
among plant species may shift in a warming cli-
mate—with important implications for ecosystem 
transitions (Brehaut and Brown 2022). For example, 
in some contexts, post-fire dominance by flammable 
woody shrubs can lead to decreased dominance of 
trees via competition (Harvey and Holzman 2014) or 
feedbacks to future fires (Tepley et al. 2018; Arroyo-
Vargas et al. 2022), whereas in other contexts shrubs 

can facilitate tree establishment under harsh post-fire 
climate conditions (Werner et  al. 2019). How com-
petitive vs facilitate outcomes vary along stress gra-
dients has been explored in many contexts (Maestre 
et  al. 2009), and incorporation into post-fire studies 
could add important insight into shifting post-fire 
plant community dynamics in the future.

Changing fire frequency interacting with severity, 
spatial patterns, and seasonality

Increasing fire frequency can erode seed availability 
for seed banking species (Keeley et  al. 1999; Buma 
et  al. 2013; Agne et  al. 2022). However the spatial 
patterns of fires set the distance to seed sources dis-
persing from elsewhere (Kemp et  al. 2016; Harvey 
et al. 2016b; Collins et al. 2017; Tepley et al. 2017). 
This spatial dimension to changing fire frequency 
has recently highlighted how the amount of seed in 
surrounding unburned areas may be eroding with 
increasing disturbance activity (Gill et  al. 2022). In 
addition, increased fire severity locally can remove 
seed sources and erode additional key legacies (e.g., 
woody carbon) via extreme burn severity that is only 
recently beginning to be better understood (Turner 
et al. 2019; Saberi et al. 2022). Finally, the seasonal 
timing of fires has gained attention as a key focus area 
of understanding how fire regime change can affect 
plant populations (Miller et al. 2019), and continued 
work on this dimension could uncover how more 
subtle or finer resolution changes to fire regimes may 
alter resilience. Collectively, these examples highlight 
key research gaps about how severity, seasonality, 
and size/spatial dimensions of fire regimes may inter-
act with frequency to erode resilience to fire.

Interactions between fire and other disturbances

Other disturbances that occur in inter fire periods can 
constrain post-fire responses in several ways that are 
not fully understood. For example, prior disturbances 
can amplify or dampen the severity of fire (Kane 
et al. 2017), which alone can erode resilience to fire 
if severity is so great that it consumes seed sources 
(e.g., blowdown followed by fire, Buma and Wess-
man 2012). However, pre-fire disturbances can also 
reduce seed availability by killing large, seed-produc-
ing individuals, eroding the capacity to respond to fire 
well before the fire event occurs (Harvey et al. 2013). 
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Finally, novel interactions between fire and distur-
bances such as non-native plant pathogen or insect 
outbreaks (e.g., Simler et  al. 2018) will be increas-
ingly important to track and forecast as global travel 
and trade continue in the Anthropocene. Building a 
mechanistic understanding about how other distur-
bances interact with fire to erode key biological lega-
cies remains a key area of needed research (Johnstone 
et al. 2016; Kane et al. 2017).
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