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Abstract

Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a
fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part
of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is
increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing
fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we
outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We
synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated
research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science;
(iv) capitalize on the “firehose” of data for societal benefit; and (v) integrate human and natural systems into models across multiple
scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying
components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward
mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only
through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research
that improves outcomes in our more fiery future.

Keywords: wildfire, climate change, resilience, wildland–urban interface, social–ecological systems

Significance Statement:

Fires can be both useful to and supportive of human values, safe communities and ecosystems, and threatening to lives and liveli-
hoods. Climate change, fire suppression, and living closer to the wildland–urban interface have helped create a global wildfire crisis.
There is an urgent, ethical need to live more sustainably with fire. Applying existing scientific knowledge to support communities
in addressing the wildfire crisis remains challenging. Fire has historically been studied from distinct disciplines, as an ecological
process, a human hazard, or an engineering challenge. In isolation, connections among human and non-human aspects of fire
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are lost. We describe five ways to re-envision fire science and stimulate discovery that help communities better navigate our fiery
future.

Introduction
Fire is a long-standing natural disturbance and a fundamental
component of ecosystems globally (1). Fire is also an integral part
of human existence (2), used by people to manage landscapes
for millennia (3). As such, fire—or broadly biomass burning—can
take on many forms: fires managed for human benefit or ecosys-
tem health include prescribed or cultural burning, and response
management beyond suppression; fires viewed as an immediate
threat to human values are typically suppressed, and under in-
creasingly extreme conditions have an increased chance of es-
caping suppression efforts. Fires can be ignited intentionally (e.g.
prescribed or cultural burning and arson) or unintentionally (e.g.
accidental human-caused or lightning-caused). They can hap-
pen in the wildlands and into human developed areas as in the
wildland–urban interface (WUI). In the Anthropocene (The An-
thropocene currently has no formal status in the Divisions of Ge-
ologic Time. https://pubs.usgs.gov/fs/2018/3054/fs20183054.pdf),
the current era characterized by the profound influence of human
impacts on planetary processes and the global environment (4),
fires from lightning and unplanned human-related ignitions (includ-
ing arson; henceforth referenced as wildfires) result in increasingly
negative impacts on economic (e.g. loss of structures and commu-
nities), public health (e.g. loss of life, air pollution, and water and
soil contamination), and ecological aspects of society (e.g. shifts
in vegetation and carbon storage) (5).

Recent decades have seen a substantial increase globally in the
length of fire seasons (6), the time of year when conditions are
conducive to sustain fire spread, increased area burned in many
regions, and projected increases in human exposure and sensitiv-
ity to fire disasters (7–11). Fire seasons are occurring months ear-
lier in Arctic and boreal regions (12). In the western United States,
the area burned in the 21st century has nearly doubled compared
to the late 20th century, enabled by warmer and drier conditions
from anthropogenic climate change, resulting in dry, flammable
vegetation (13). Fire activity in the 21st century is increasingly ex-
ceeding the range of historical variability characterizing boreal
(14) and Rocky Mountain subalpine (15) forest ecosystems for mil-
lennia. Unprecedented fires in the Pantanal tropical wetland in
South America (16) and ongoing peatland fires across tropical Asia
(17) exemplify the global scope of recent fire extremes.

Shifts in wildfire patterns can come with increasingly negative
human and ecological impacts. Globally, dangerous smoke levels
are more common as a result of wildfires (9, 10, 18, 19). The 2019
to 2020 Australian wildfire season produced fires that were larger,
more intense, and more numerous than in the historical record
(20), injecting the largest amount of smoke into the stratosphere
observed in the satellite era (21, 22) and impacting water supplies
for millions of residents (23). While extreme fire events capture
public attention and forest fire emissions continue to rise (24, 25),
the ongoing decline of burned-area across some fire-dependent
ecosystems might have equally large social and environmental
impacts. Global burned area has decreased by approximately 25%
over the last two decades, with the strongest decreases observed
across fire-dependent tropical savanna ecosystems and attributed
to human interactions (26). Decreases across these systems are
important, as maintaining diverse wildfire patterns can be essen-
tial for biodiversity or achieving conservation goals (27).

Humans are fundamental drivers of changing wildfire activ-
ity via climate change, fire suppression, land development, and
population growth (26, 28–30). Human-driven climate change is
aggravating fire danger across western North America (13, 31, 32),
Europe (33, 34), and Australia (35). Exacerbated by this increasing
fire danger from heavy fuel loads and greater flammability from
drought and tree mortality, human-caused ignitions increased
wildfire occurrence and extended fire seasons within parts of
the United States (28), and it is these human-caused wildfires
that are most destructive to homes and property (36). Concurrent
with these challenges is a growing recognition that Indigenous
peoples have been living with fire as an essential Earth-system
process (30). Although some Indigenous societies have lived in
relatively low-density communities, others have lived at scales
analogous to the modern wildland-urban interface for centuries,
making Indigenous fire lessons relevant for the sustainability of
post-industrial communities as well (e.g. (37)).

As wildfire danger increases, we are only beginning to under-
stand longer-term postfire impacts. These include regeneration
failure of vegetation (38, 39), changes to biodiversity through in-
teractions with climate change, land use and biotic invasions (27),
landslides and debris flows (40), contaminated water and soil (23,
41), and exposure to hazardous air quality for days to weeks in
regions that can extend thousands of kilometers from smoke
sources (9, 10, 19, 42). Increasing wildfire activity and associated
negative impacts are expected to continue over the 21st century,
as greenhouse gas emissions continue to rise (7, 43, 44).

The rapid pace of changing fire activity globally is a signifi-
cant challenge to the scientific community, in both understanding
and communicating change. Even the metrics we use to quantify
“fire” come up short in many instances. For example, total area
burned and ecological fire severity are useful for characterizing
some key dimensions of fire, but often do not capture negative
human impacts. For example, the 2021 Marshall Fire in Colorado,
United States, was less than 2,500 hectares, but was more destruc-
tive, in terms of structures lost, than the two largest wildfires in
recorded Colorado history, each of which burned approximately
80,000 hectares. The 2018 Mati Fire in Greece burned only 1,276
hectares, but destroyed or damaged 3,000 homes and was the
second-deadliest weather-related disaster in Greece (11). While
evidence suggests increasing aridity will lead to more burning (7,
32, 43, 45), the 2021 Marshall Fire and 2018 Mati Fire remind us
that area burned is a poor indicator of the negative impacts of
wildfires on the built environment.

Given the shifts in wildfire activity and its increasingly dev-
astating impacts, the need to fund research and adopt policy
to address fire-related challenges continues to grow. These chal-
lenges may be best addressed with coordinated proactive and col-
lective governance through engagement of scientists, managers,
policy-makers, and citizens (23). A recent United Nations’ report
recognized extreme wildfires as a globally relevant crisis, high-
lighting the scope of this challenge (46). To address this crisis
we need to recast how we study fire as an inherently transdis-
ciplinary, convergent research domain to find solutions that cross
academic, managerial, and social boundaries. As society urgently
looks for strategies to mitigate the impacts of wildfires, the sci-
entific community must deliver a coherent understanding of the
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diverse causes, impacts, management paths, and likely future of
fire on Earth that considers the integrated relationships between
humans and fire. Humans are not only affected by fire, but are
also fundamental to its behavior and impact through our changes
to the biosphere and our values, behaviors, and conceptions of
risk.

The challenge of understanding the integrated role of humans
and fire during the Anthropocene is an opportunity to catalyze the
next generation of scientists and scientific discovery. It requires
funding that develops collaborative, transdisciplinary science, dis-
solves disciplinary boundaries, and aligns research goals across
traditional academic fields and ways of knowing. This represents
an opportunity to build scientific practices that are respectful and
inclusive of all, by creating spaces to share and co-produce knowl-
edge between and among all stakeholders. Such practice demands
multi-scale data collection and analysis to develop models that
test our understanding, support safer communities, and provide
long-term projections. By reinventing the training of scientists to
reflect this transdisciplinary, multi-stakeholder, and data-driven
approach, we can help revolutionize community practices and
provide information needed by communities to be able to bet-
ter live with fire—in all its forms—in our increasingly flammable
world.

Here we identify five key challenges as a call to action to ad-
vance the study of fire as a fundamental aspect of life on Earth
(Fig. 1).

1. Integrate across disciplines by promoting coordination
among physical, biological, and social sciences.

2. Embrace different ways of knowing and knowledge genera-
tion to identify resilience pathways.

3. Use fire as a lens to address fundamental science questions.
4. Capitalize on the “firehose” of data to support community

values.
5. Develop coupled models that include human dimensions to

better anticipate future fire.

These challenges are a synthesis of discussions of a group of
mainly US-based researchers at the National Science Founda-
tion’s Wildfire in the Biosphere workshop. The challenges of fire
science extend beyond national borders, and our hope is that
funding agencies, land stewards, and the larger fire science re-
search community will join to address them. Within each call-
to-action challenge we describe the nature of the challenge, ad-
dress the social impacts, identify fundamental scientific advances
necessary, and propose pathways to consider across communities
as we address our place in a more fiery future (Table S1, Supple-
mentary Material). Acting on these challenges will assist in better
addressing the immediate impacts of fire, as well as postfire im-
pacts (e.g. landslides and vegetation shifts). The focus on imme-
diate needs is not meant to undermine the importance of longer-
term impacts of fires, which in many ways are less understood,
rather to highlight their urgency.

Discussion
1: Challenge: Integrate across disciplines by
promoting coordination among physical,
biological, and social sciences

Wildfire is a biophysical and social phenomenon, and thus its causes and

societal impacts cannot be understood through any single disciplinary

lens.

While studied for over a century, wildland fire science often re-
mains siloed within disciplines such as forestry, ecology, anthro-
pology, economics, engineering, atmospheric chemistry, physics,
geosciences, and risk management. Within each silo, scientists of-
ten exclusively focus on fire from a specific perspective—fires as
a human hazard, fire as a management tool, or fire as an ecolog-
ical process. Collectively, we have deep knowledge about specific
pieces of fire science; however, to move fire science forward and
answer fundamental questions about drivers and impacts of fire,
we must break out of traditional silos (e.g. institutional type, re-
search focus, and academic vs. management) (47) to a more holis-
tic and integrated approach across social (48), physical, and bio-
logical sciences, and including Traditional Ecological Knowledge
(TEK) (49) (see Challenge 2).

Fire affects every part of the Earth system: the atmosphere, bio-
sphere, hydrosphere, and lithosphere and plays a critical role in
local to global water, carbon, nutrient, and climatic cycles by me-
diating the transfer of mass and energy at potentially large scales
and in discrete pulses. Ecosystems and fire regimes are changing;
we need to be prepared to anticipate tipping points and abrupt
transitions to novel or alternative states. To fully understand the
causes and consequences of shifting fire regimes, we must accept
fire as a process with feedbacks between social and ecological sys-
tems while increasing respect among diverse communities (e.g.
(50)). Rethinking collaborations across disciplines provides oppor-
tunities to determine shared values and goals (51) as well as new
modes of practice that dismantle inequitable and exclusionary as-
pects of our disciplines (52). Team dynamics are particularly im-
portant in multidisciplinary collaborations given the varied expe-
riences, expertise, and discipline-specific language used by team
members. In many cases, these differences, in addition to the his-
torical and systematic inequities within STEM (Science, Technol-
ogy, Engineering, and Math) fields (e.g. (53, 54)) have kept disci-
plines siloed and some groups excluded (55).

We need to build upon the adaptive, integrated knowledge,
and “use-inspired” approaches, such as those put forth by Kyker-
Snowman et al. (56) and Wall et al. (57), by including empiricists,
modelers, practitioners, and domain experts from broad disci-
plines where they are involved at every stage of data collection,
idea development, and model integration. In this approach, the
two-way exchange of ideas is emphasized in order to effectively
incorporate domain expertise and knowledge into models of sys-
tems that can not only improve understanding, but eventually
move toward forecasting capability (see Challenge 5).

2: Challenge: Embrace different ways of knowing
and knowledge generation to identify resilience
pathways

Fire is an intrinsic part of what makes humans human, such that all hu-

mans from diverse groups and perspectives can provide valuable insights;

thus co-produced knowledge is a prerequisite to innovation in fire science.

Given the urgent need to reduce wildfire disaster losses and to
promote pathways to live sustainably with fire, it is critical to inte-
grate knowledge from across disciplinary, organization, and com-
munity boundaries (58). Knowledge coproduction offers a model
that identifies and produces science needed to drive change (59)
through iterative, sustained engagement with key stakeholders
(60). Specifically, development of mitigation tools and strategies
enables social–ecological systems to transform from a resistance
mindset to a resilience mindset (61).
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Fig. 1. We need a proactive fire research agenda to support human values and create safe communities as impacts from lightning and unplanned
human-caused wildfires increase in the Anthropocene. Such an agenda will span multiple disciplines and translate understanding to application
while answering fundamental science questions, incorporating diverse and inclusive partnerships for knowledge coproduction, capitalizing on the
wealth of new and existing data, and developing models that integrate human dimensions and values.

There exist millennia of knowledge by Indigenous peoples of
Tribal Nations that hold Traditional Ecological Knowledge (TEK)
of ancient burning practices (62–66) used to maintain healthy
ecosystems. Indigenous and non-Indigenous place-based soci-
eties, such as traditional fire practitioners in Europe and else-
where, have used fire to safeguard communities, promote de-
sired resources, and support cultural lifeways for centuries to mil-
lennia (37, 49, 67–72). Working together, scientists from diverse
cultural perspectives can co-define resilience across ecocultural
landscapes (73), using this knowledge to identify perspectives of
resilience to wildfire (72, 74). Our fire science community needs
to work with diverse communities to determine what is valuable,
generating needed information on risk scenarios and potential re-
silience pathways in the face of a changing climate, while uphold-
ing data principles that respect Tribal sovereignty and intellectual
property (75).

We must accept fire as a social–ecological phenomenon that
operates across multiple scales in space and time: fire acutely af-
fects ecosystems, humans, and the biosphere; fire is a selective
pressure and driver of ecological change; and humans, includ-
ing various management practices, influence fire behavior and
impacts. We need to understand where vulnerable communities
are before wildfires occur, to build better, create defensible spaces
around homes, reduce unintended human ignitions (e.g, downed
power lines), and promote Indigenous management strategies and
prescribed burning practices where they could mitigate disaster
risk (37). Returning fire to landscapes and developing a culture of
fire tailored to specific settings is increasingly seen as the most ef-
fective path forward. We repeatedly converged on the need for “sustain-
able” strategies for human communities to coexist with fire and smoke to
become more aligned with TEK. Our authorship group, however, reflective
of STEM disciplines more broadly, consists of non-Indigenous scientists.
This situation emphasizes the need to prioritize collaboration with Indige-
nous scientists and community partners in developing ways to adapt to
fire in a changing world.

It is critical to recognize the human role in using fire in the
environment, and bring that into our understanding of adapting
management for a more firey world. In turn, this can inform devel-
opment of coupled models (see Challenge 5) representing fire as
a human–biophysical phenomenon and can be used for manage-
ment. To do so, we need to understand different value systems and
develop metrics through co-production, thus collectively defin-
ing what success looks like for all stakeholders. This perspective
provides scientific support for adaptive management and policy
in the face of continuing human-caused change, including cli-
mate change. The resist–accept–direct (RAD) framework is explic-
itly designed to guide management through ecological transfor-
mations (76), a scenario increasingly likely with unprecedented
climate change and enabled by fire. Because fire can catalyze so-
cial and ecological transformations, the RAD framework will be
particularly useful for coming decades. Applying decision frame-
works such as RAD requires incorporating human values, percep-
tions, and dynamism into fire management, within and beyond
natural sciences (51, 77). Thus, the process itself offers potential
for transdisciplinary innovation and inclusion of different ways of
knowing (e.g. TEK) by requiring interdisciplinary engagement, in-
cluding paleo scientists, ecologists, traditional knowledge holders,
cultural anthropologists, archeologists, remote sensing experts,
modelers, policy scientists, and community and government
partners.

In addition to working across disciplines, we need to be aware
of extant systems of oppression inherent in Western science
(78). The lack of diversity among knowledge contributors in co-
produced science and among scientists themselves fundamen-
tally limits innovation, applicability, as well as being fundamen-
tally unjust (79). Furthermore, as fire is a global ecosystem pro-
cess, the research community should reflect a similar breadth in
perspectives (80). However, fire science, not unlike many STEM
fields, has problems with representation across all axes of iden-
tity, including gender, race, ethnicity, LGBTQA+, and disability (e.g.
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81). For example, the majority of our authorship group work at
US institutions, likely limiting the scope of our discussions. To
change course, we need to interrogate our own practices and limit
opportunities for bias. Providing clarity and transparency about
and throughout decision-making processes (e.g. grants, job post-
ings, and publications), training reviewers about bias, requiring
the use of rubrics for all evaluations, and anonymizing applica-
tion materials whenever possible, are all effective strategies to
reduce gender and racial bias (82). Given the importance of rep-
resentation, as a community we need to elevate a diverse group
of role models (83), e.g. highlighting notable accomplishments of
women-identifying fire scientists (84). To embrace diverse knowl-
edge requires explicit consideration of equity in stakeholder par-
ticipation and fire science recruitment and training from under-
represented backgrounds.

3: Challenge: Use fire as a lens to address
fundamental science questions

We should use fire to answer fundamental scientific questions within and

across physical, biological, and social sciences.

Fire is a ubiquitous and pervasive phenomenon, historically
studied and tested in natural philosophy and scientific disciplines
(85). It is also an ancient phenomenon with strong impacts on
the Earth system and society across scales. Thus, fire is an ex-
cellent subject for asking basic questions in physical, biological,
and social sciences. Here, we present three fundamental science
areas that use fire to understand change: (a) ecology and evolu-
tionary biology; (b) the evolution of Homo sapiens; and (c) social
dynamics.

Fire is a catalyst for advances in ecology and evolutionary biol-
ogy, providing a lens to examine how life organizes across scales
and how organismal, biochemical, and physiological traits and
fire-related strategies evolve. Consequently, fire ecology provides
a framework for predicting effects of dramatic environmental
changes on ecosystem function and biodiversity across spatial
and temporal scales (27, 86), especially where fire may have pre-
viously not been present or has been absent for extended peri-
ods (e.g. (87)). Research is needed that targets the synergy of the-
oretical, experimental, and modeling approaches exploring the
fundamental evolutionary processes of how organisms and com-
munities function in dynamic and diverse fire environments. Fire
allows researchers to investigate the fundamental and relative
roles of traits and strategies across plant, animal, and microbial
communities (27), and evaluate the influence of smoke on the
function of airborne microbial communities (88), photosynthe-
sis (89), and aquatic systems (90). A focus on fire has advanced
evolutionary theory through the understanding of the evolution
of plant traits and subsequent influence on the fire regime and
selective environment, i.e. feedbacks (91). Fire–vegetation feed-
backs may have driven the diversification and spread of flower-
ing plants in the Cretaceous era (92, 93). This hypothesis builds
upon processes observed at shorter time scales (e.g. the grass–fire
cycle; (94)) and suggests flowering plants fueled fire that opened
space in gymnosperm-dominated forests. This functional diver-
sity can be parameterized into land surface models (see Chal-
lenge 5) by using phylogenetic lineage-based functional types to
characterize vegetation, and could enhance the ecological real-
ism of these models (95). Critically needed is an understand-
ing of the reciprocal effects of fire and organismal life history
characteristics and functional traits that characterize Earth’s fire
regimes.

Fire provides an important lens through which we interpret
major processes in human evolution. For example, the pyrophilic
primate hypothesis (96) leverages observations from primatology
(97) and functional generalization from other fire-forager species
(98) to suggest that fire was critical for the evolution of larger-
brained and big-bodied Homo erectus in sub-Saharan Africa by
1.9 million years ago. These populations relied upon fire-created
environments and may have expanded burned areas from natu-
ral fire starts, all without the ability to start fires on their own.
Fire-starting became a staple technology around 400,000 years
ago (99), after which human ancestors could use fire in funda-
mentally new ways, including to further change their own selec-
tive environment (100). For example, at least some Neandertal (H.
sapiens neandertalensis) groups in Europe used fire to intentionally
change their local environment more than 100,000 years ago (101),
and Middle Stone Age people (H. sapiens sapiens) in east Africa may
have done the same shortly thereafter (3).

Fire illuminates social dynamics and can be a lens through
which we examine fundamental issues in human societies, and
even the dynamics of gendered knowledge (102). Specifically,
fire questions convenient assumptions about population density
and human–environmental impacts. For example, small popula-
tions of Maori hunter–gatherers irreversibly transformed non-fire-
adapted South Island New Zealand plant communities when they
arrived in the 13th century CE (103, 104), whereas large popu-
lations of Native American farmers at densities comparable to
the modern WUI subtly changed patch size, burn area, and fire–
climate relations in fire adapted pine forests over the past millen-
nium (37). Similarly, in an ethnographic context much Aboriginal
burning is done by women (105) and male uses of fire tend to have
different purposes (106) with potential implications for varied so-
cial and environmental pressures on gendered fire uses, goals, and
outcomes.

Answering fundamental fire science questions about evolu-
tionary biology and the dynamics of human societies could help
illuminate the role of humans in cross-scale pyrogeography. This
is especially important in the Anthropocene as species, commu-
nities, and ecosystems arising from millennial-scale evolutionary
processes respond to new disturbance regimes and novel ecosys-
tem responses (107). Moreover, with increasing extreme fire be-
havior in many regions (16, 17, 35, 108), human societies must
learn to live more sustainably with fire in the modern context
(109). Fire is a catalyst for exploring fundamental questions and
highlights the need for interagency fire-specific funding programs
to support basic science. The direct benefits to society of fire re-
search are well-acknowledged, but fire scientists are not organized
as a broad community to argue for coordinated efforts to support
basic science. Current fire-focused funding sources are usually
limited to narrowly applied projects, while funders of basic sci-
ence treat fire as a niche area. The result is duplicated efforts and
competition for limited funds instead of coordination across an
integrated fire science community.

4: Challenge: Capitalize on the “firehose” of data
to support community values

We need funding to harness the data revolution and aid our understand-

ing of fire.

The volume, type, and use of data now available to study
fire in the biosphere is greater than ever before—a metaphori-
cal “firehose” delivering vast amounts of information. Multidis-
ciplinary science campaigns to study fire behavior and emissions
are data intensive and essential for improving applications from
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local, regional, to global scales (e.g. ABoVE (110), MOYA (111), FAS-
MEE (112), FIREX-AQ (113), MOYA/ZWAMPS (114), and WE-CAN
(115)). Observation networks supported by the US National Sci-
ence Foundation (e.g. NEON, National Ecological Observatory Net-
work, 116) and the Smithsonian sponsored ForestGEO plots (117,
118) are uniquely valuable for the duration and intensity of data
collection. Additionally, there are dozens of public satellites, and
even more private ones, orbiting the planet collecting remote-
sensing data related to pre-, active, and post-fire conditions and
effects, thereby facilitating geospatial analysis from local, to re-
gional, and global scales (119, 120). Terabases of genome-level
molecular data on organisms spanning from microbes to plants
and animals are readily generated (121). Finally, laboratory, field,
and incident data exist like never before, where in the past there
was limited availability.

While these data exist, there are challenges with the spa-
tial and temporal frequency and coverage and duration of ob-
servations. Airborne flight campaigns cover a limited domain
in space and time, while geostationary satellites provide high
temporal resolution with relatively coarse spatial resolution and
polar orbiting satellites provide higher spatial resolution, but
lower temporal resolution. These tradeoffs in resolution and cov-
erage lead to different data sources providing conflicting esti-
mates of burned area (122, 123). We need investment in labora-
tory and field infrastructure for studying fire across a range of
scales and scenarios (124) and continued work comparing and
accounting for biases across existing data streams. We must de-
velop infrastructure and support personnel to collect real-time
observation data on prescribed or cultural fires (125) and wild-
fires in both wildlands and the wildland-urban interface across
scales: from the scale of flames (i.e. centimeters and seconds)
to airshed (kilometers and hours), to fire regimes (regions and
decades).

Furthermore, many measures of fire processes and impacts
are inferred from static datasets (126), while fires and their ef-
fects are inherently dynamic; collecting observations that cap-
ture these dynamics, such as the response of wind during a
fire event, would greatly reduce uncertainties in forecasting the
impacts of fire on social–ecological systems. For fast-paced, lo-
cal processes like fire behavior and the movement of water
and smoke, we need more high frequency observations from
laboratory and field-based studies, such as the role of flame-
generated buoyancy in fire spread (127), to update empirical re-
lationships, some established by decades-old research and still
used in models (128, 129). For centennial- to multi-millennial pro-
cesses covering regions and continents, we need paleoclimate
and paleoecological data sets that cover the variation in fire
regimes (e.g. low severity vs. high severity) across ecoregions (130,
131).

We need technologies that collect data relevant for better un-
derstanding fire impacts on ecosystems and humans. New tech-
nology (e.g. ground-, air-, and space-borne lidars, radars, [hyper-
spectral] spectrometers, and [multispectral] radiometers) would
enable measurements to help characterize surface and atmo-
spheric structure and chemistry and better understand human
land cover and land use in conjunction with fire impacts on air
and water quality, ecosystems, and energy balance. We must use
molecular techniques to capture the direct and indirect effects
of soil heating on soil organic matter composition (132), below-
ground biological communities (133, 134), organism physiology
(135), and ecosystem function processes (136). Finally, laboratory
work can help better understand the mechanisms of heat trans-
fer (137, 138), firebrand ember generation, behavior and transport

(139, 140), atmospheric emissions (141), and transformation of fire
plumes (115).

One challenge is that these data are not well-integrated for
studying fire disturbance, as many were not specifically designed
to examine the causes or effects of fire within an integrated
social–ecological construct. For example, the use of diverse sets of
multi-scale (tree, patch, local, and regional landscape) and multi-
proxy records (pollen and charcoal, tree-ring fire scars, tree cohort
analysis, inventories, photographic imagery, surveys, and simula-
tion modeling) can be used to determine structure, tree-species
composition and fire regimes (72, 142), and departures from his-
torical ranges of variability (15, 143). However, this type of inte-
grated historical data across a spatiotemporal continuum is not
readily accessible to fire scientists, policy-makers, and communi-
ties. Current capabilities of remote sensing measurements of veg-
etation properties (144) are also not easily ingested as relevant
information for more traditional fire models (145). Finally, there is
limited access to global datasets of research-quality event-based
data (24, 146–149), which is necessary to advance the understand-
ing of human and biophysical processes of fire.

Many of these data are housed in disciplinary databases, such
as the International Multiproxy Paleofire Database (150), which
can be challenging for nonspecialists to access and use. We need
to compile and merge these diverse data across spatial (m2 to
Earth System) and temporal (milli-seconds to millennia) scales
to support integration across disciplines, research groups, and
agencies. Previous work provides an extensible framework for co-
aligned airborne and field sampling to support ecological, mi-
crobiological, biogeochemical, and hydrological studies (112, 151).
This work can be used to inform integration and coordination
of data collection across platforms (field and remotely sensed),
scales (flame to airshed), and systems (atmosphere, vegetation,
soil, and geophysical), to establish a network that will produce
long-term, open-access, and multi-disciplinary datasets related
to fire science. This effort requires a reevaluation of how we
collect data, ensuring we do so in ways that address key soci-
etal needs (e.g. aiding in human adaptability and maintenance
of biodiversity). It highlights the need to coordinate across labo-
ratory, field, and model-based research in designing future cam-
paigns to develop, not only a common platform, but also a com-
mon language and coordinated data management across disci-
plines. Standardized data collection (e.g. observables, units, and
so on) and protocols for quality control, archiving, and curation
will be essential to merge existing datasets (90) and create new
ones.

In support of increased utility, we need to establish and use
common metadata standards and a community of practice for
open algorithms and code, informed by the FAIR data princi-
ples making data and code Findable on the web, digitally Ac-
cessible, Interoperable among different computing systems, and
thus Reusable for later analyses (152), and data literacy com-
munities such as PyOpenSci (https://www.pyopensci.org/) and
ROpenSci (https://ropensci.org/). Implementation of FAIR princi-
ples are complemented by the CARE (Collective benefit, Authority
to control, Responsibility, and Ethics) principles that protect In-
digenous sovereignty and intellectual property (75). This requires
not only building coordination among federal agencies, but also
with state, local, and Tribal governments and institutions. Such
a community of practice, exemplary of ICON (Integrated, Collab-
orative, Open, Networked) science principles and practices (153),
would facilitate more frequent collaborations across disciplines
and lead to convergent research and data-intensive scientific
discovery.
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By compiling and merging diverse datasets, we can remove bar-
riers to searching, discovering, and accessing information across
disciplines, thereby accelerating scientific discovery to under-
stand drivers and impacts of fire, helping support the develop-
ment of more fire-resilient communities. There is considerable
potential to harness this data revolution and explore cross-
disciplinary research in the form of biomimicry adapted from
long-term parallels from flora, fauna, and Indigenous peoples’ re-
sponses to fire (154), management planning with Potential Oper-
ational Delineations (PODs; (155)), and digital twins (156) that use
coupled models including human dimensions (see Challenge 5)
to adapt and test historical parallels and potential solutions for
human communities and broader social–ecological systems.

5: Challenge: Develop coupled models that
include human dimensions to better anticipate
future fire

To better anticipate future fire activity and its impacts on and feedback

with social–ecological systems, we must develop coupled models that in-

tegrate human- and non-human dimensions.

We need modeling frameworks that better represent fire in a
social–ecological system, and that can be applied across multi-
ple spatial and temporal scales spanning wildland–rural–urban
gradients (8, 11, 20). Such frameworks should capture differences
between managed and unmanaged fire as they relate to: preced-
ing conditions, ignition sources (28), fire behavior and effects on
ecosystems, humans, and the biosphere. Making this distinction
between managed and unmanaged fire in modeling is essential to
characterizing changes in the natural system due to the influence
from human behavior (26). Fire has been a primary human tool in
ecosystem management (30), and thus unraveling the variability
in human–fire interactions over space and time (see Challenges
2 and 3) is necessary for understanding fire in the biosphere (26,
30, 69). There are multiple types of models that can benefit from
better accounting for human interactions.

First, an improved forecasting system is needed to project both
managed (e.g. prescribed burn and wildfire response) and unman-
aged (i.e. wildfire) fire spread and smoke behavior, transport, and
transformation (112). This can aid society’s strategic and managed
response to fire in terms of community resilience (47, 74). Mod-
els of fire behavior and effects span spatial and temporal scales,
but fundamental to each is the consideration of fuels, vegetation,
and emissions. We must work to capture fuel heterogeneity, in-
cluding the physiological dynamics that influence vegetation fuel
loading (157), fuel moisture (158, 159), and the flammability of live
and dead vegetation (160, 161). Fuel moisture and its variation in
space and time have the capacity to alter fire behavior (162) and
ecosystem vulnerability to wildfire (163). Currently, most models
do not capture both these types of fuels and plant physiological dy-
namics, despite both influencing fire behavior, effects, and subse-
quently land surface recovery. Several wildfire propagation mod-
els exist ranging from empirical to process-based (127, 164), but
they either entirely focus on wildlands (112, 164) or pertain to lim-
ited aspects to wildfire behavior in communities focusing on inter-
actions among a group of structures (165) and not on the hetero-
geneous landscapes of the wildland-urban interface (166, 167). We
are making significant advances in capturing the impacts of fire
on winds during an event (164) as well as on local weather condi-
tions (168, 169), which both have the capacity to alter fire behavior
and path. Advances in analytical approaches are making it possi-
ble to model community vulnerability (170) and risk (171) from a
fire propagation perspective while accounting for the interaction

between structures (172). However, to date, we do not have con-
sensus on a model to assess the survivability of individual struc-
tures from wildfire events, as available urban fire spread models
are not designed for these communities and underestimate the
fire spread rate in most cases (172). Developing such models is vi-
tal for determining how to manage wildfire risk at the community
level.

Second, land surface models, which simulate the terrestrial en-
ergy, water, and carbon cycle, often represent fire occurrence and
impacts, but omit key aspects or are parameterized in a simple
manner (173). As such, there is a need to develop fire models
within land surface models that integrate fire behavior and effects
representative of the social–ecological environment within which
humans interact with fires and subsequently influence impacts to
terrestrial energy, water, and carbon cycles. The current genera-
tion of fire-enabled land surface models demonstrate that a lot of
uncertainty is due to how the human impact on fires is currently
characterized, and exemplifies the need for a better representa-
tion of human dimensions within global fire models (174–177).
Relationships between people and fire are driven by interactions
between the social environment in which humans act (e.g. liveli-
hood system, land tenure, and land use), the physical environ-
ment (e.g. background fire regime, landscape patterns, and land
management legacies), and the policy sphere. The current gener-
ation of fire-enabled land surface models are not able to repre-
sent fire in this social–ecological environment, and thus struggle
to capture both historical changes in global fire occurrence (26),
as well as how these changes have impacted ecosystems and so-
ciety with sufficient regional variability in the timing and type of
human impacts on fires (174, 175). Additionally, current land sur-
face models do not represent mixed fuel types between natural
vegetation, managed land, and the built-environment, which in-
fluence fire spread, characteristics, and impact directly. Land sur-
face models rarely include the effects of fire on organic matter
(i.e. pyrogenic organic matter production (178), or the nonlinear
effects of repeated burning on soil carbon stocks (179)). As this
likely plays an important role in the net carbon balance of wild-
fires (178), these omissions may amount to oversights in estimates
of the impact of fires on carbon stocks (180). While land surface
models often include simplified postfire vegetation dynamics for
seed dispersal and tree seedling establishment, competition dur-
ing succession, formation of large woody debris, and decomposi-
tion (e.g. (157, 181)), they exclude the influence humans have on
these processes through land management.

Third, fire-enabled Earth system models, which seek to simu-
late the dynamic interactions and feedbacks between the atmo-
sphere, oceans, cryosphere, lithosphere, and land surface (as such
incorporate land surface models), use a simplistic representation
of fire simulating aggregate burned area rather than the spread
and perimeters of individual fires (182). This is a challenge for
projecting the broad-scale impacts of fire on ecosystem resilience
and functioning, because the temporal and spatial patterns of fire
that vary as a function of managed vs. unmanaged fire, under-
pin whether and how ecosystems recover (183, 184). This further
affects smoke emission speciation, formation, and behavior of
greenhouse gases, aerosols, and secondary pollutants that affect
the climate system (185, 186) through the absorption and scatter-
ing of solar radiation and land surface albedo changes. Our limited
understanding is due in part to challenges related to representing
this complexity and the resulting processes and impacts within
and across interacting model grid cells.

There is a need for the infrastructure to implement and
nest models across multiple scales, linking from fine to coarse
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temporal and spatial scales and including a two-way coupling
to allow interaction between models. This would, for example,
allow Earth system models to better capture changing vegeta-
tion and fuels through time, as modeled in land surface mod-
els; this in turn would help modelers capture finer-scale dynamics
such as interactions between fire and weather and human inter-
actions with individual fire events (e.g. suppression efforts). Re-
ducing uncertainties across scales provides an opportunity to use
data-assimilation to benchmark against multiple types of data at
sites, for various scales, fires (prescribed/cultural and wild), and
under variable conditions (see Challenge 4). Advanced analytics
in machine learning and artificial intelligence can help ease com-
putational complexity (187–189) in such an integrated framework.

Nested, coupled modeling frameworks that integrate across
physical, biological, and social systems will not only enhance our
understanding of the connections, interactions, and feedbacks
among fire, humans, and the Earth system, but also enable adap-
tation and resilience planning if we create metrics to gauge the
response of social–ecological systems to fire (e.g. (126, 190)). These
metrics would include fire impacts on ecosystem services, human
health, ecosystem health, and sustainable financing through poli-
cies on fire suppression, air and water quality, and infrastructure
stability. Recent progress in understanding the characteristics of
western United States community archetypes, their associated
adaptation pathways, and the properties of fire-adapted commu-
nities (191, 192) should be explored across a diverse set of com-
munities and used to inform such metrics.

Metrics for risk and resilience would need to be incorporated
in these nested, coupled models that include human dimensions
so that projections before, during, and after a fire could allow for
informed decision-making. Risk includes not only the hazard, or
potential hazard, of fire, but the exposure (directly by flame or in-
directly from smoke) and vulnerability, as susceptibility, to be neg-
atively impacted by the hazard; all of which are different for man-
aged vs. unmanaged fire (20, 108, 143). Using models to quantify
risk could, for example, guide planned management shifts from
fire suppression to increased use of prescribed burning as an es-
sential component for managing natural resources (143, 193, 194),
but is currently challenging to implement due to smoke effects
(195). Next-generation, integrated human–fire models are neces-
sary to help managers both locally, those who use prescribed fire
near communities (125, 196), and regionally or nationally, those
who report emissions. While such a comprehensive framework
would address the specific needs of different stakeholders and
policy-makers, it would also be accessible and broadly compre-
hensible to the general public (e.g. fire paths forecast), similar to
existing national warning systems for hurricanes and tornadoes.
A focus on community resilience to wildfires expands the defi-
nition of risk beyond human impact to consider ecological and
biological risk more holistically, as well as their role in a coupled
social–ecological system. Integrating human behavior and deci-
sion dynamics into a nested modeling framework would allow for
another dimension of feedback and interactions. Thus, integration
of data and processes across scales within a nested, coupled mod-
eling framework that incorporates human dimensions creates op-
portunities to both improve understanding of the dynamics that
shape fire-prone systems and to better prepare society for a more
resilient future with increased fire danger.

Conclusion
Now in the emerging era of the Anthropocene, where climate
change and decoupling of historical land management have

collided, society needs large-scale investment in the next genera-
tion of fire science to help us live more sustainably in our increas-
ingly flammable world. Fire is a complex phenomenon that has
profound effects on all elements of the biosphere and impacts
human activities on a range of spatial and temporal scales. We
need a proactive fire research agenda. Fire science has been re-
active in that it responds to agency opportunities and conducts
research in response to past fires. It is essential that we transition
from this reactive stance to proactively thinking about tomorrow’s
needs by acknowledging and anticipating future fire activity. This
next generation of fire science will require significant new invest-
ment for a center that synthesizes across disciplines (Challenge
1), is diverse and inclusive (Challenge 2), innovative (Challenge 3),
and data-driven (Challenge 4), while integrating coupled models
that consider human dimensions and values (Challenge 5 ) (Fig. 1;
Table S1, Supplementary Material).

One cause of current fragmentation within the United States is
the narrow focus of major funding sources. Funding currently tar-
gets short-term goals, on small, single-Principal Investigator-led
research, usually aimed at one aspect of fire science; it should tar-
get a holistic reimagination of our relationship with fire entirely,
across academic, managerial, and social boundaries. This will cre-
ate a broader and deeper understanding of the multifaceted na-
ture of fire, with less focus on case studies and more focus on
case integration. International projects funded by the European
Commission have implemented a multi- and interdisciplinary ap-
proach, but can still be improved. Support for applied research
will be most effective by aiming at both short- and long-term ap-
plications and solutions. There are active and prominent discus-
sions on the need to fund fire science across government, local,
and Indigenous entities that are all vested in understanding fire.
These investments will be critical to advancing our ability to gen-
erate new insights into how we live more sustainably with fire. Fire
will continue to have enormous societal and ecological impacts,
and accelerate feedbacks with climate change over the coming
decades. Understanding, mitigating, and managing those impacts
will require addressing the presented five challenges to inform
how we serve environmental and social justice by sustainably liv-
ing and interacting with fire in our natural world.
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