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INTRODUCTION

Total area burned and the frequency of large fires have 
increased over recent decades in many forested eco-
systems across the globe (Collins et al.,  2021; Parks & 
Abatzoglou,  2020; Whitman et al.,  2022). Fire activity 
is strongly driven by climate (Abatzoglou et al.,  2018), 
and continued increases are expected as fire seasons 
lengthen, ignitions increase and extreme fire weather oc-
curs more frequently (Bowman et al.,  2020). Changing 
fire activity is expected to further increase area burned 
and change fire size distributions (Boulanger et al., 2018; 
Littell et al., 2018; Wang et al., 2022), with important im-
plications for the spatial patterns and ecological effects 
of fire (Collins et al., 2021; Parks & Abatzoglou, 2020), 
as well as forest resilience (Johnstone et al.,  2016) and 
associated ecosystem services (Lecina- Diaz et al., 2021).

A key characteristic of forest fires is the amount and 
spatial configuration of area burned at high severity (i.e. 
areas where most or all trees are killed by fire). The size 
and spatial structure of high- severity patches directly 

shape postfire seed availability and dispersal (Gill 
et al., 2022), formation and persistence of complex early- 
seral habitat (Steel et al., 2022), rates of forest regener-
ation (Harvey et al., 2016b) and carbon uptake (Turner 
et al.,  2004), and likelihood of conversion to nonforest 
ecosystems (Coop et al.,  2020). Within and among in-
dividual fire events, spatial patterns of burn severity 
are shaped by a complex mixture of broadscale drivers 
(e.g. climate, fire weather) and local- scale constraints 
(e.g. topography, fuels) (Harvey et al.,  2016a; Parks, 
Holsinger, Panunto, et al., 2018). Within fire regimes (i.e. 
areas characterized by a prevailing frequency, seasonal-
ity and severity of fire activity; Moritz et al., 2011), the 
relative influence of broadscale drivers and local- scale 
constraints shapes the typical or expected spatial dimen-
sions of burn severity.

As fire activity increases in many regions worldwide, 
a critical gap remains in our ability to anticipate burn 
severity patch size and structure, and therefore poten-
tial ecological effects. Nonstationarity is expected in 
many direct relationships between climatic drivers and 
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fire activity due to interacting effects of fuel structure 
and abundance, and this nonstationarity is often seen 
as a barrier to predicting future fire effects (Newman 
et al.,  2019). In recent decades, total high- severity 
burned area has increased in many regions, driven by in-
creases in total area burned and the occurrence of large 
fires (Collins et al.,  2021; Parks & Abatzoglou,  2020). 
However, whether fires are becoming proportionally 
more severe or homogenous over time, and what should 
be expected in the future for such trends, remains un-
clear. High- severity proportion has increased in some 
regions (Harvey et al., 2016a; Miller et al., 2009; Parks & 
Abatzoglou, 2020; Singleton et al., 2019) but not others 
(Collins et al., 2021; Miller et al., 2012; Reilly et al., 2017; 
Rivera- Huerta et al.,  2016; Whitman et al.,  2022). In 
some cases, high- severity burned areas are becoming 
characterized by larger and/or simpler shaped patches 
(Reilly et al.,  2017; Rivera- Huerta et al.,  2016; Stevens 
et al.,  2017), though whether such trends are directly a  
result of fire size (Harvey et al.,  2016a) and are there-
fore likely to continue in the future is not well tested. 
Understanding these relationships is key to forecasting  
burn severity patterns as fire activity increases.

Scaling relationships can provide fundamental in-
sights into how complex system behaviour emerges as  
a function of event size and have been used to under-
stand various dimensions of fire activity (McKenzie 
& Kennedy,  2011). Quantifying scaling relationships 
describing how high- severity patch size and structure 
change with fire size could offer a means of forecasting 
the potential range of future fire effects, given projec-
tions for increasing area burned and shifting fire- size 
distributions. High- severity patch size and structure 
are strongly related to fire size and high- severity pro-
portion (Cansler & McKenzie, 2014; Collins et al., 2017; 
Harvey et al.,  2016a), exhibiting characteristic scal-
ing relationships both within fire events and within 
fire regimes. Across fire size distributions, scaling 
behaviour arises in theory because the potential for 
large high- severity patches scales upward with the size 
of fire events (Gardner & Urban, 2007). In reality, the 
relative influence of broadscale drivers versus local- 
scale constraints will dictate, to varying degrees, the 
occurrence of increasingly large and contiguous high- 
severity patches with increasing fire size (Cansler & 
McKenzie,  2014; Harvey et al.,  2016a). Therefore, the 
forms of these scaling relationships are expected to vary 
by fire regime, and as with other facets of fire activity, 
to operate within some characteristic range of variation  
(Moritz et al.,  2011). By integrating system- level inter-
actions between climate and fuels, scaling relationships 
have the potential to exhibit stationarity and thus offer 
a credible approach to projecting future fire effects.  
Despite the potential for scaling relationships to yield 
insight into the ranges of burn severity patterns that 
emerge within fire regimes, these relationships have not  
yet been widely explored.

Here, we address the above knowledge gap by ask-
ing what spatial patterns of burn severity, and therefore 
ecological effects, are expected from fires of different 
sizes. Using contemporary (1985– 2020) satellite burn 
severity data, we quantify spatial scaling relationships 
using 1615 fires occurring across a gradient of fire re-
gimes (frequent and low severity, moderately frequent 
and mixed severity, and infrequent and high severity) 
within a >600,000 km2 forested region (the Northwest 
United States; Figure 1), asking: (Q1) What is the con-
temporary range of variation in high- severity patch size 
and structure expected from fires of different sizes? (Q2)  
Do spatial scaling relationships vary by geographic re-
gion and/or time period (i.e. do they appear stationary 
in space and/or time)? To address these questions, we 
fit smooth curves to multiple conditional quantiles of 
each metric across the range of observed fire sizes (400 
–  >400,000 ha). We thereby evaluate how the upper and 
lower bounds of high- severity patch size and structure 
(in addition to central tendency estimates) scale with 
fire size. To evaluate spatial and temporal stationarity, 
we test whether the scaling relationships that charac-
terize fire regimes vary by geographic region (Pacific 
Northwest versus Northern Rockies; Figure  1), year, 
or time period [1985– 2000 versus 2001– 2020, the lat-
ter period being associated with increasing aridity and  
accelerating annual area burned in the western United 
States (Juang et al.,  2022)]. As fire size distributions 
shift in the future, stationarity in the relationships be-
tween fire size and patterns of burn severity would en-
able future broadscale patterns of burn severity to be  
inferred.

M ATERI A LS A N D M ETHODS

Study region

Our study region is the forested ecoregions of the 
Northwest United States (Wyoming, Montana, Idaho, 
Washington, Oregon, and northern California), deline-
ated using EPA Level III Ecoregions (Commission for 
Environmental Cooperation, 1997) (Figure 1). Climate, 
topography and forest types vary widely across the 
study region, as do fire activity and fire- adapted traits 
of dominant tree species (Hood et al.,  2021; Reilly 
et al., 2021; Stevens et al., 2020). Historical fire regimes 
range from frequent, low- severity fire in warmer and 
drier parts of the region to infrequent, high- severity 
fire in cooler and wetter parts of the region (Hood 
et al.,  2021; Reilly et al.,  2021). We used LANDFIRE 
land cover data to classify forested areas and fire re-
gime groups (FRGs) throughout the study region 
(Rollins, 2009). We identified potentially forested areas 
using LANDFIRE Environmental Site Potential (ESP) 
and classified the study region into three historical fire 
regimes: frequent and low severity (FRG I), moderately 
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frequent and mixed severity (FRG III), and infrequent 
and high severity (FRG IV and FRG V).

Fire severity data

We obtained perimeters for all fire events ≥400 ha in size 
occurring within the study region between 1985 and 2020 
from the Monitoring Trends in Burn Severity database 
(https://mtbs.gov/). We included only those fire events oc-
curring in primarily forested areas (≥50% forested based 
on LANDFIRE ESP) that were designated wildfires (i.e. 
we excluded prescribed fires). Each fire event was as-
signed its dominant historical fire regime (low- , mixed-  
or high- severity) based on the most prevalent fire regime 
group within that fire's perimeter (Figure 1). In total, our 
data set consisted of 1615 individual fire events, with 751, 
373, and 491 fire events assigned to the low- , mixed-  and 
high- severity fire regime groups, respectively.

Burn severity maps were generated for each fire event 
using Landsat satellite data and following previously es-
tablished methods (Parks, Holsinger, Voss, et al., 2018). 
We quantified burn severity at a 30- m pixel scale using the 
relativized differenced normalized burn ratio (RdNBR), 
a satellite- based fire severity metric that estimates the 
amount of fire- induced vegetation change by comparing 
pre-  and postfire vegetation greenness indices (Miller & 
Thode, 2007). We included an offset term in our calcula-
tion of RdNBR to account for phenological differences 
between pre-  and postfire imagery (Parks, Holsinger, 
Voss, et al.,  2018). Following Harvey et al.  (2023), we 

used statistical models calibrated to Northwest United 
States field plots (Saberi & Harvey,  2023) to identify a 
threshold of RdNBR (RdNBR ≥542) corresponding 
to ≥75% tree basal area mortality. We then used this 
threshold to categorize each burn severity map into 
high (RdNBR ≥542) and low- to- moderate (RdNBR 
<542) burn severity classes. High- severity classifications 
based on satellite index thresholds regularly have the 
highest accuracy relative to other burn severity classes 
(Cansler & McKenzie, 2012; Lydersen et al., 2016; Miller 
& Thode, 2007), and similar thresholds for high- severity 
fire have been applied across a range of scales, from re-
gional extents (Reilly et al., 2017; Singleton et al., 2019; 
Stevens et al., 2017) to the entirety of the western United 
States (Davis et al.,  2023; Parks, Holsinger, Panunto, 
et al., 2018).

Landscape metrics

Our analysis focussed on areas within each fire event 
that burned at high severity, quantifying landscape met-
rics describing both the size and spatial configuration 
of high- severity patches. High- severity patches were de-
lineated using an eight- neighbour rule after a majority 
smoothing filter was applied to each categorized burn 
severity map to reduce the impact of single- pixel patches 
(Figure 2a). Within each high- severity patch, distance to 
seed source was quantified for each pixel that was poten-
tially forested prior to burning. Distance to seed source 
was quantified by calculating the distance to the nearest 

F I G U R E  1  Study region with all wildfires categorized by primary historical fire regime (frequent and low- severity, moderately frequent 
and mixed- severity, infrequent and high- severity). Fire regime classifications are from the LANDFIRE database (Rollins, 2009).
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F I G U R E  2  Schematic illustrating high- severity patch size (a) and high- severity patch structure (b) metrics for three wildfires that were 
similar in size (each 4000– 4500 ha). Open circles represent observed data within each fire event, black dotted lines with arrows point to 
standard (aggregate or central tendency) metrics, and solid green lines represent metrics describing within- fire distributions. (a) Patch size 
metrics include area- weighted mean patch size and two parameters (ψ and β) describing the shape of the patch size distribution. When ψ is close 
to zero, patch size distributions resemble a power law function. When ψ is negative, patch size distributions curve upward and are typically 
characterized by one or more very large patches. When ψ is positive, patch size distributions curve downward and are typically characterized 
by many small patches. Scatter plot of ψ and β shows parameter values for all fires in the dataset. (b) Patch structure metrics account for 
patch shape and forest cover and include total high- severity core area (previously forested pixels >150 m from potential unburned seed source 
following fire) and one parameter (SDC) describing the shape of the distance- to- seed distribution for forested areas burned at high severity. 
Smaller values of SDC represent larger and more homogenously shaped patches with interior areas far from unburned seed sources. From left 
to right, example fires are the Fishhawk (Wyoming), Boze (Oregon), and Big Bend (Oregon) fires.
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potentially forested pixel that did not burn at high sever-
ity (Figure 2b).

We quantified the size of high- severity patches using 
two complementary approaches (Figure  2a). First, 
we calculated the area- weighted mean size of all high- 
severity patches within each fire event. By weighting 
larger patches more heavily, an area- weighted mean is 
larger than an arithmetic mean and represents the ex-
pected patch size that would be encountered in an av-
erage location within a landscape (Harvey et al., 2016a). 
Second, we characterized the shape of each patch size 
distribution using an approach that has, to the best of 
our knowledge, not previously been used to describe 
high- severity patch size distributions within fire events. 
Following the methods developed for fire size distribu-
tions by Hantson et al. (2016), we fit truncated lognormal 
distributions to the patch sizes within each fire event. 
The probability density function, p(x), for each patch 
size distribution takes the following form:

where C is a normalization constant, ensuring the area 
under p(x) sums to 1, and takes the following form:

The parameters xmin and xmax define the lower and 
upper truncation limits, respectively. We set xmin equal 
to 1 ha and xmax equal to the size of each individual fire 
event. Essentially, p(x) is a modified truncated power 
law function with an added term, ψ, that adds curva-
ture to the distribution in log– log space (Pueyo, 2006). 
Within the truncation limits, the parameters β and ψ de-
termine the shape of each distribution (Figure 2a). When 
ψ is equal to 0, the distribution reduces to a power law 
function, and the shape of the distribution is a straight 
line in log– log space, with β determining the slope, or rel-
ative prevalence of small versus large patch sizes. When 
ψ is negative, the distribution curves upward in log– log 
space (i.e. there is a greater likelihood of large patches, 
relative to a power law function with the same value of 
β). When ψ is positive, the distribution curves downward 
in log– log space (i.e. there is a lower likelihood of large 
patches, relative to a power law function with the same 
value of β). In practice, the parameters β and ψ are highly 
correlated, with β decreasing as ψ increases (Figure 2a) 
(Hantson et al., 2016).

As with the size of high- severity patches, we quantified 
the spatial structure of high- severity patches using two 
complementary approaches (Figure 2b). First, we calcu-
lated total core area within the interior of high- severity 
patches, where core area is defined as previously forested 
pixels >150 m from potential seed source following fire. 
This threshold of 150 m exceeds the likely seed dispersal 

distance for many conifers in the Northwest United 
States (Donato et al., 2009; Harvey et al., 2016b). Second, 
using the approach proposed by Collins et al. (2017), we 
characterized the rate at which the forested area within 
the interior of high- severity patches shrinks with increas-
ing distance to potential seed source. In this approach, 
the proportion of total high- severity or ‘stand- replacing’ 
forested area, P, exceeding a given distance to potential 
seed, dts, is modelled using a modified logistic function 
as follows:

Here, the stand- replacing decay coefficient (SDC) is 
a parameter determining the rate at which the propor-
tional stand- replacing area decreases with increasing 
distance to potential seed. Larger values of SDC indicate 
a rapidly decaying interior area (i.e. most forested areas 
burned at high severity are relatively close to potential 
seed sources), whereas smaller values of SDC indicate 
a more slowly decaying interior area (i.e. more forested 
areas burned at high severity are far from potential seed 
sources; Collins et al., 2017).

Area- weighted mean patch size and total core area 
were calculated using the sf and raster packages in R 
(Hijmans et al., 2022; Pebesma, 2018). Patch size distri-
bution shape parameters (β and ψ) were fit to the patch 
size distributions for each fire event using the maximum 
likelihood algorithm proposed by Pueyo (2014). We only 
fit patch size distribution parameters for fire events with 
at least 10 patches that were ≥1 ha in size (Table  S1). 
Distance- to- seed distribution parameters (SDC) were fit 
to the inverse cumulative distance- to- seed distributions 
for each fire event using nonlinear least squares, follow-
ing Collins et al. (2017). Inverse cumulative distance- to- 
seed distributions were summarized using 30- m bins of 
pixel- level distance to potential seed source prior to pa-
rameter fitting, and parameters were fit only to those fire 
events with high- severity area falling within at least two 
30- m bins (Table S2).

Analysis

We used nonparametric quantile regression to quantify 
the range of variation in high- severity patch size and 
structure metrics expected from fires of different sizes 
(Q1). Compared with standard regression approaches, 
which estimate the conditional mean of a response vari-
able, quantile regression estimates the conditional quan-
tiles of a response variable, thereby providing a fuller 
picture of the relationships between variables (Cade & 
Noon, 2003; Koenker & Bassett, 1978). This approach is 
particularly useful in ecological applications where com-
plex interactions between multiple variables, many of 
which cannot be accounted for, lead to unequal variances 

lnp(x) = lnC − �ln(x) − �[ln(x)]2

C =

(

∫
xmax

xmin

e−�ln(x)−�[ln(x)]2dx

)−1

P∼ 1

10
SDC x dts
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in response distributions (Cade & Noon, 2003). Rather 
than assuming linearity in scaling relationships, we used 
a nonparametric approach to fit smooth curves (via ad-
ditive basis splines) to the conditional quantiles of each 
scaling relationship (Muggeo et al., 2021).

We fit smooth curves to five conditional quantiles 
(0.05, 0.25, 0.5, 0.75, and 0.95) of each patch size and struc-
ture metric across the range of observed fire sizes within 
each fire regime. Quantile curves were constrained to 
be monotonically increasing for area- weighted mean 
patch size and total core area, both of which are ex-
pected to continually increase with fire size (Cansler & 
McKenzie, 2014; Harvey et al., 2016a; Reilly et al., 2017), 
and monotonically decreasing for the distance- to- seed 
parameter (SDC), which is expected to continually de-
crease with fire size (Collins et al., 2017). No monotonicity 
constraints were imposed for the patch size distribution 
parameters (β and ψ). Area- weighted mean patch size, 
total core area, and SDC were log10- transformed prior 
to model fitting; in cases where total core area was zero, 
we added 0.01 ha to enable log10- transformation. To 
evaluate potential differences between fire regimes, we 
also fit combined models for each metric with smooth 
terms for fire size that were allowed to vary by fire re-
gime. We then evaluated whether there were significant 
differences between fire regime- specific scaling relation-
ships by calculating pointwise differences, along with 
approximate 95% confidence intervals, between pairs of 
regime- specific quantile curves across the range of ob-
served fire sizes following Rose et al. (2012). All quantile 
curves were fit using the quantregGrowth package in R 
(Muggeo, 2021).

We used multiple lines of evidence to evaluate the 
spatial and temporal stationarity of scaling relationships 
(Q2). To evaluate spatial stationarity, we considered two 
broad geographic regions within our study area: the 
Pacific Northwest and the Northern Rockies (Figure 1). 
Unfortunately, within the high- severity fire regime, 
there were too few fire events in the Pacific Northwest 
(n = 42) for a robust comparison with the Northern 
Rockies (n = 449) (Tables  S1, S2). Within the low-  and 
mixed- severity fire regimes, however, we fit quantile re-
gression models with smooth terms for fire size that were 
allowed to vary by geographic region. We then evalu-
ated whether there were significant differences between 
region- specific scaling relationships by calculating 
pointwise differences between region- specific quantile 
curves, along with approximate 95% confidence inter-
vals, following the approach used for fire regimes.

To evaluate temporal stationarity, we considered an-
nual trends and two distinct time periods: an early pe-
riod (1985– 2000) and a late period (2001– 2020), the latter 
of which is associated with increasing aridity and accel-
erating annual area burned in the western United States 
(Juang et al., 2022). Within each fire regime, we fit three 
sets of quantile regression models. First, to assess inter-
annual variation, we fit models with smooth terms for 

fire size and additional smooth terms for year. Second, 
to test for overall increasing or decreasing trends, we fit 
models with smooth terms for fire size and additional 
linear terms for year. Annual trends were considered sta-
tistically significant if p < 0.05 for the linear year term. 
Third, to evaluate whether there were significant differ-
ences between time period- specific scaling relationships, 
we fit quantile regression models with smooth terms for 
fire size that were allowed to vary by time period, follow-
ing the approach used for fire regimes and geographic 
regions.

As an additional line of evidence, we used a 10- fold 
cross- validation procedure to evaluate whether adding a 
smooth term for year or allowing scaling relationships to 
vary either by time period or geographic region improved 
model predictive power over a null model (i.e. a model in-
cluding fire size as the only predictor). Prediction error 
was calculated for quantiles 0.05, 0.5 and 0.95 using the 
quantile loss function (Koenker & Bassett, 1978), which 
asymmetrically weights the absolute residuals and is 
analogous to the root mean square error used in standard 
regression models. Prediction error was averaged across 
quantiles and cross- validation folds for each model, with 
a reduction in overall average prediction error consid-
ered an improvement in model predictive power.

RESU LTS

Scaling relationships

Across fire regimes, we observed qualitatively similar 
scaling relationships for high- severity patch size and 
structure (Figure 3a– j). Area- weighted mean patch size 
and total core area consistently increased with fire size 
(Figure  3a,b,g,h), reflecting the occurrence of increas-
ingly large and spatially homogenous high- severity 
patches with increasing fire size. The distance- to- seed 
distribution parameter (SDC) consistently decreased 
with fire size (Figure 3i,j), indicating greater distances to 
unburned seed sources within patch interiors. Patch size 
distribution parameters were highly variable at small fire 
sizes, but as fire sizes increased, ψ approached a value of 
0 and β a value of 1.5 (Figures 2a, 3c– f). This suggests a 
convergence of patch size distributions toward a power 
law with increasing fire size.

Spatial scaling relationships were characterized 
by large ranges of variation, with the low-  and mixed- 
severity fire regimes exhibiting wider ranges of varia-
tion for most metrics compared with the high- severity 
fire regime (Figure 3a– j). Across the range of fire sizes, 
the upper bounds for potential patch size and homoge-
neity (i.e. upper quantile estimates for area- weighted 
mean patch size and total core area, and lower quantile 
estimates for SDC) did not differ across fire regimes 
(Figure 3b,h,j, Figure S1). However, the lower bounds for 
potential patch size and homogeneity (i.e. lower quantile 
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   | 7BUONANDUCI et al.

estimates for area- weighted mean patch size and total 
core area, and upper quantile estimates for SDC) var-
ied across fire regimes (Figure  3b,h,j, Figure  S1), with 
smaller and more heterogeneous patches tending to 
occur in the low-  and mixed- severity regimes across the 
range of fire sizes.

Spatial and temporal stationarity

Within fire regimes, we observed both spatial and tem-
poral stationarity in scaling relationships, as suggested 
by a lack of strong evidence that scaling relationships 
differ by region, time period or year. After accounting 

F I G U R E  3  Quantile regression estimates for all high- severity patch size (a– f) and high- severity patch structure (g– j) metrics, plotted 
separately for each fire regime with observed data (left column) and overlaid for comparison across regimes (right column). Dots represent 
observed data, thick solid line is quantile 0.5, dark shaded region is interval between quantiles 0.25 and 0.75 (shown only in plots with observed 
data), and light shaded region is interval between quantiles 0.05 and 0.95. Three data points (for which ψ > 1) were excluded from (e) to improve 
visualization of quantile estimates.
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for fire regime, region- specific scaling relationships 
(Pacific Northwest versus Northern Rockies; Figure 1) 
largely did not differ (in the low-  and mixed- severity re-
gimes, for which data were sufficient for robust regional 
comparisons; Figure S2), suggesting that fire regimes are 
characterized by consistent scaling relationships across 
space. We observed modest interannual variation in 
some scaling relationships (Figure 4); however, in most 
cases, we detected no linear trend in scaling relationships 
over time (Figure 4) or difference in scaling relationships 

between time periods [early (1985– 2000) versus late 
(2001– 2020)] (Figure S3), suggesting the relationships be-
tween fire size and spatial patterns of burn severity are 
not yet changing over time and with warming climate. 
Cross- validation indicated that null models (i.e. models 
including fire size as the only predictor) offered the high-
est predictive power in most cases (Tables  S3 and S4); 
in cases where region, year, or time period did improve 
model performance, the improvement was slight (predic-
tion error reduced by ≤1% compared to null models).

F I G U R E  4  Estimated marginal effect of year for all high- severity patch size (a– c) and high- severity patch structure (d,e) metrics. Fire size 
is held constant at 3000 ha. Solid lines and shaded intervals are quantile estimates from models with smooth term for year; solid line is quantile 
0.5, dark shaded region is interval between quantiles 0.25 and 0.75, and light shaded region is interval between quantiles 0.05 and 0.95. Dotted 
lines are quantile estimates from models with linear term for year; heavy dotted lines indicate linear terms for which p < 0.05 and light dotted 
lines indicate linear terms for which p ≥ 0.05. Linear terms were generally not statistically significant, suggesting temporal stationarity in the 
relationship between fire size and spatial patterns of burn severity.
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DISCUSSION

Our findings demonstrate that spatial patterns of high- 
severity wildfire scale consistently with fire size, a phe-
nomenon with important implications for how forests are 
shaped by increasing fire activity now and in the future. 
The robust scaling relationships that emerged within and 
among a range of forest ecosystems and fire regimes re-
veal characteristic signatures of contemporary forest fire 
activity. These scaling relationships, which appear sta-
tionary in both space and time at the scales considered 
here, offer a powerful means to anticipate near- future 
patterns of burn severity as climate warming continues 
and fire sizes increase across ecosystems.

Scaling relationships emerge within and among 
fire regimes

High- severity patch size and structure followed clear 
scaling relationships that were qualitatively similar 
across fire regimes, demonstrating that across contem-
porary forest systems, larger wildfires consistently result 
in larger and more homogenous patches of severe fire ef-
fects. With greater fire size, high- severity patches tended 
to be larger and more spatially homogenous (greater 
area- weighted mean patch size and total core area), con-
taining areas that were increasingly far from potential 
seed sources (lower SDC). In forested ecosystems that 
rely on seed dispersal for postfire recovery, larger and 
simpler shaped high- severity patches can alter forest 
resilience, as these areas are more likely to regenerate 
slowly and to transition to nonforest vegetation states 
following fire (Coop et al., 2020).

Quantifying multiple conditional quantiles of patch 
size and structure revealed key similarities and differ-
ences in the ranges of burn severity patterns across fire 
regimes. The fire regimes in our study span a gradient 
of climate-  to fuel- limitation, with fire activity in the 
infrequent, high- severity fire regime being primarily 
climate- limited and fire activity in the frequent, low- 
severity fire regime being primarily fuel- limited (Hood 
et al., 2021; Reilly et al., 2021). In the absence of other 
limiting factors, fire size itself imposes some natural 
upper limit to the size and homogeneity of high- severity 
burn patches. As limitations on fire severity increase 
in number and/or relative influence (e.g. in landscapes 
with complex topography, discontinuous fuel structure, 
and/or moderate fire weather conditions), patches are 
expected to become smaller in size or more complex in 
shape (Cansler & McKenzie, 2014; Harvey et al., 2016a), 
therefore falling below the fire- size- imposed upper lim-
its. Among fire regimes, the comparable upper bounds 
for patch size and homogeneity across the range of fire 
sizes suggests that when the influence of local- scale 
constraints is relatively weak (e.g. under extreme fire 
weather conditions), fire size itself imposes a comparable 

upper limit to patch size and structure across systems. In 
the low-  and mixed- severity regimes, patches tended to 
fall below these fire- size- imposed upper limits more fre-
quently than in the high- severity regime, with differing 
lower bounds emerging for patch size and homogeneity 
among fire regimes. This divergence in scaling relation-
ships across fire regimes reflects the greater influence 
of local- scale constraints on fire severity in the low-  and 
mixed- severity systems.

Contemporary ranges of variation in scaling relation-
ships likely differ from historical ranges, particularly in 
the low-  and mixed- severity regimes, due in large part 
to contemporary land management practices. Forests 
across the Northwest United States have been subject to 
more than a century of fire exclusion and suppression 
(Hagmann et al., 2021), which can influence scaling re-
lationships in multiple ways. First, since fire suppression 
efforts are less successful under extreme weather condi-
tions (Arienti et al., 2006), the largest fires in our data 
set are more likely to have burned under extreme con-
ditions. In the absence of suppression efforts, a wider 
range of burn severity patterns for larger fires allowed 
to burn under mild or moderate weather conditions 
might be expected. Second, in low-  and mixed- severity 
regimes, fire exclusion has led to an uncharacteristic 
buildup of fuels and a misalignment of forest structure 
and fire activity with historical conditions (Hagmann 
et al.,  2021). Prior to European colonization, the low- 
severity regime was characterized predominantly by 
frequent but low- severity surface fires (Hood et al., 2021; 
Reilly et al., 2021). Although we found that burn sever-
ity patterns tended to be more heterogeneous in the low- 
severity regime, we also found that high- severity patches 
could be as large and homogenous as those observed in 
the high- severity regime, potentially reflecting this de-
parture from historical conditions. This departure is a 
major concern for forest resilience in historically low- 
severity regimes, which are generally not as well adapted 
to recover from large patches of high- severity fire as are 
forests within high- severity regimes (Pausas et al., 2017; 
Stevens et al., 2020).

Patch size distributions within large fires exhibit 
power law behaviour

The convergence of within- fire patch size distributions 
toward a power law function with increasing fire size 
carries implications for the scale of drivers operating 
within large fires. In the context of regional or global fire 
size distributions, power law behaviour has been posited 
to emerge within facets of fire activity when there is a 
balance between broadscale drivers and local- scale con-
straints (McKenzie & Kennedy, 2012; Moritz et al., 2011; 
Povak et al., 2018). Here, the emergence of power law be-
haviour for within- fire patch size distributions suggests 
that a similar balance may occur within fire events. For 
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small-  to moderate- sized fires (e.g. 400– 10,000 ha), patch 
size distributions varied widely, with some fires charac-
terized primarily by large patches and others primarily 
by small patches; this suggests that in smaller fires, ei-
ther broad-  or local- scale factors alone may primarily 
drive spatial patterns of burn severity. Conversely, the 
convergence of patch size distributions toward a power 
law function with increasing fire size suggests that both 
broad-  and local- scale factors influence spatial patterns 
of burn severity within large fires (e.g. >10,000 ha). Large 
fires often coincide with (Abatzoglou et al., 2021; Clarke 
et al., 2020) or can create their own (Fromm et al., 2010) 
extreme weather conditions, driving extreme fire be-
haviour. The largest burn days and largest high- severity 
patches therefore occur when broadscale drivers domi-
nate (Peters et al.,  2004). However, large fires can also 
burn over the course of many days to weeks (Scaduto 
et al., 2020), spanning a range of weather conditions and, 
by nature of covering large areas, encounter a range of 
topographic and vegetation structures. This wide range 
of conditions, alternating between places and times when 
broad-  versus local- scale factors dominate, allows for the 
formation of a wide range of patch sizes, including many 
that are small but also some that are very large.

Despite occurring at the lowest frequency, the larg-
est high- severity patches have the greatest ecological ef-
fect, both in terms of total high- severity burned area as 
well as distances to seed sources within patch interiors 
(Cansler & McKenzie, 2014; Collins et al., 2017; Harvey 
et al.,  2016a). Although patch size distributions within 
large fires consistently converged towards a probability 
distribution taking the form of a power law, the size of 
the largest high- severity patches still varied among fires. 
The lack of convergence in the distance- to- seed param-
eter (SDC) with increasing fire size suggests that even in 
the largest fires, ecological effects can vary widely, due 
to both the size and spatial configuration (i.e. shape and 
surrounding forest cover) of the largest patches.

Stationary scaling relationships offer a means of 
projecting future fire effects

Across a wide range of fire regimes and forest ecosys-
tems, we found that the relationships between fire size 
and high- severity patch size and structure appear sta-
tionary in both space and time, even over a time period 
(1985– 2020) where climate and fire size distributions 
themselves were temporally variable (Juang et al., 2022). 
Put plainly, even as fire size distributions have shifted 
toward larger fires, the ranges of burn severity patterns 
expected for fires of a given size have remained the 
same. As climate and fire activity continue to shift, and 
as fuel limitations potentially increase in areas subject 
to increasing fire activity (Kennedy et al., 2021; Turner 
et al., 2022), it is possible that the envelopes of potential 
burn severity patterns may shift in the future. Continued 

implementation of the methods presented here would 
permit such changes to be detected (e.g. downward shifts 
in scaling relationships might suggest an increasing prev-
alence of local- scale fuel constraints, thereby signalling 
potentially important changes in fire regimes). Within 
the contemporary fire record, however, our findings sug-
gest that systematic shifts in scaling relationships have 
not yet occurred.

Managing for future fire requires not only project-
ing possible changes in regional metrics such as annual 
area burned, but also anticipating the potential eco-
logical outcomes of those changes. Near- term shifts in 
fire size distributions alone (i.e. increasing frequency 
of large fires) will lead to predictable shifts in ecolog-
ical effects (i.e. larger high- severity patches with inte-
rior burned areas far from potential seed sources). At 
broad scales, stationarity in scaling relationships offers 
a means of projecting the potential range of ecological 
effects expected with fire activity in the near future. 
Predicting burn severity patterns for a given landscape 
is difficult, since fire behaviour is highly stochastic and 
weather conditions at the time of burning can strongly 
influence the burn severity patterns that result (Parks, 
Holsinger, Panunto, et al.,  2018; Prichard et al.,  2020). 
However, by combining the range of variation in scaling 
relationships with projections for area burned and fire 
size distributions, it is possible to quantify the range of 
potential ecological effects of fire activity at a broader 
scale. Given the large range of variation in both climate 
and fire activity observed during the contemporary re-
cord, these scaling relationships integrate a wide range 
of potential burn- severity drivers. Our approach there-
fore provides a meaningful advance in inferential power 
by distilling fire size- severity relationships into relatively 
simple terms. Accounting for expected patterns of high- 
severity patch size and structure with increasing fire size 
enables bounds to be placed around potential outcomes, 
improving the ability to prepare for future fire activity.

CONCLUSION

Larger and simpler shaped high- severity burn patches 
can consistently be expected with larger fires, carry-
ing important implications for forest resilience, ecosys-
tem services and societies living sustainably with fire. 
Wildfire- driven transitions of forests to alternative veg-
etation states are increasingly likely within large and 
homogenous high- severity burn patches, where postfire 
tree regeneration is often limited by the availability of live 
seed sources. Spatial patterns of burn severity are there-
fore important to anticipate, as they can substantially 
alter habitat, hydrologic cycling, carbon storage and the 
societal benefits provided by forests (Coop et al., 2020). 
Within contemporary fire regimes, the stationarity we 
observed in burn severity scaling relationships offers a 
means to anticipate the range of burn severity patterns 
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expected with near- future fire activity. As fire activity 
continues to increase in many forested regions, and as 
the relative strength of climate drivers and fuel con-
straints potentially shift, these scaling relationships also 
offer a contemporary baseline that can be used to detect 
important changes that may occur within fire regimes in 
the future.
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