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Ecography Globally, forest disturbances caused by herbivorous insects and plant pathogens (i.e.
2025: 07680 biotic disturbances) have increased since the 1990s, a trend linked in part to climate
doi: 10.1002/eco.07680 warming. With increases in biotic disturbance activity, an emerging ecological phe-
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biotic disturbance hotspots occurring from 2000 to 2020 across three broad forested
regions in the western United States (US; the Southern Rockies, Middle Rockies, and
Cascades). Using Bayesian spatio-temporal models, we evaluated whether hotspots
can be predicted from predisposing factors expected to increase forest susceptibility to
biotic disturbance (i.e. forest composition, topography, and average climate), as well
as inciting factors known to trigger individual bark beetle and pathogen outbreaks
(i.e. annual weather). Biotic disturbance hotspots exhibited distinct spatio-temporal
patterns and trends within each region. Forest structure and composition were the
strongest and most consistent drivers of hotspots. Other factors varied in their impor-
tance by region, reflecting regional differences in biophysical context. Relative to the
predictor variables included in our models, estimated spatio-temporal random effects
were more closely correlated with model predictions, suggesting that dynamic factors
such as outbreak spread strongly shape patterns of biotic disturbance hotspots. Our
results illustrate the widespread nature of biotic disturbance hotspots across western
US coniferous forests and demonstrate the importance of forest structure and regional
outbreak dynamics in anticipating hotspots at regional scales. These findings provide
a deeper understanding of interacting forest disturbances and have important impli-
cations for the resilience of forests during a period marked by continued increases in
disturbance activity.
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Introduction

Forest disturbances play a critical role in shaping the struc-
ture and function of temperate forests worldwide, along with
the ecosystem services these forests provide (Thom and Seidl
2016). Globally, biotic disturbance activity (i.e. outbreaks of
insects and plant pathogens) has been increasing since the
late 1990s (Kautz et al. 2017), linked in part to the sensitiv-
ity of biotic agents to changing climate (Bentz et al. 2010,
Weed et al. 2013, Seidl et al. 2017). While region- and spe-
cies-specific trends vary, biotic disturbance activity is expected
to continue to increase as climates become warmer and drier
(Bentz et al. 2010, Kautz et al. 2017, McNichol et al. 2022,
Lantschner and Corley 2023).

As disturbance regimes change in response to chang-
ing climate, interactions among disturbances are increas-
ingly important to consider (Turner 2010, Buma 2015,
Burton et al. 2020). Multiple disturbances can interact via
the legacies of prior disturbances affecting subsequent distur-
bances or ecological patterns and processes (Peterson 2002).
Some disturbances can interact to produce compound effects
that may alter mechanisms or rates of ecosystem recovery
(Paine et al. 1998). In the western United States (US), one
disturbance interaction emerging in recent decades is the
occurrence of biotic disturbance ‘hotspots’, areas where two
or more distinct biotic disturbances overlap in space and time
(Harvey et al. 2023). Between 1997 and 2019, - 5-18% of
the area affected by biotic disturbance each year in western
US forests were hotspots (Harvey et al. 2023). Yet, the causes
and consequences of biotic disturbance hotspots remain
poorly understood.

Biotic disturbance hotspots may have important implica-
tions for forest resilience, particularly if they result in com-
pound or synergistic effects (Paine et al. 1998). Tree-killing
bark beetles and many plant pathogens are specialists, feed-
ing on or infecting a specific host tree genus or species, and
in the case of bark beetles, also preferentially attacking older
and larger host trees (Raffa et al. 2008). In forests affected
by a single biotic disturbance, the selective mortality of par-
ticular species and sizes of trees often results in abundant
surviving non-host and/or understory trees that facilitate
rapid post-disturbance growth responses (Veblen et al. 1991,
Buonanduci et al. 2023), providing continuity in forest
functional attributes such as live carbon stocks (Pfeifer et al.
2011). In forests affected by biotic disturbance hotspots, how-
ever, the synchronous mortality of multiple host tree species
has the potential to dampen compensatory growth responses
that might otherwise provide stability in forest function
(Harvey et al. 2023). These effects are likely to be exacerbated
in areas subject to increasing climate stress, further decreas-
ing rates of forest recovery and increasing the likelihood that
mechanisms of forest resilience could break down.

Biotic disturbance and associated tree mortality is a com-
plex process, with numerous factors shaping both the activity
and effects of biotic agents ultimately contributing to tree
death. As a conceptual framework, both ‘predisposing’ and
‘inciting’ factors can drive biotic disturbance activity (Manion
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1981). Long-term or persistent factors, including host avail-
ability, forest structure, and average climatic conditions, can
predispose locations to biotic disturbance activity (Raffa et al.
2008). Short-term factors, including annual weather condi-
tions, can then incite biotic disturbance activity through
various mechanisms. For example, warm temperatures below
supraoptimal temperature thresholds affect insect physiology,
leading to increased survivorship, reproduction, and repro-
ductive synchrony, all of which can facilitate insect outbreaks
(Bentz et al. 1991, Hansen et al. 2001, Tobin et al. 2014).
Warm and dry conditions also stress potential host trees,
reducing resources allocated to defense (Mattson and Haack
1987, Gaylord et al. 2013, Huang et al. 2020). Predisposing
and inciting factors can both shape biotic disturbance activ-
ity, with their relative influence being context dependent.

Spatial overlaps in biotic disturbances may occur due to
shared drivers, mechanistic links between agents, or random
chance. Temporally synchronous hotspots may occur when
individual biotic agents respond to shared broad-scale driv-
ers, such as multiple bark beetle outbreaks occurring syn-
chronously in response to regional increases in temperature
(i.e. the ‘Moran effect’; Moran 1953, Peltonen et al. 2002,
Bentz et al. 2010, Chapman et al. 2012, Preisler et al. 2012,
Hart et al. 2017). Conversely, temporally lagged hotspots
may occur due to mechanistic links between disturbance
agents, such as when defoliating insects reduce tree vigor,
thereby increasing host tree susceptibility to subsequent bark
beetle attacks (Hadley and Veblen 1993, Cole et al. 2022).
Even in the absence of shared or linked mechanisms, some
overlap of biotic disturbance agents is expected to occur ran-
domly due to an overall increase in biotic disturbance activity
within a finite forested area. Despite the increasing poten-
tial for overlap and interaction of biotic disturbance agents,
the broad-scale factors associated with biotic disturbance
hotspots remain understudied.

Here, we characterize the spatio-temporal patterns and
drivers of biotic disturbance hotspots across three broad for-
ested regions in the western US that span differing gradients
of forest types and bioclimatic conditions. We focus on tem-
porally synchronous hotspots of tree-killing biotic agents that
target a variety of host tree species and that are not expected
to be mechanistically linked (Table 1). We examine predis-
posing factors expected to increase forest susceptibility to
biotic disturbance (i.e. forest composition, topography, and
climate), as well as inciting factors known to trigger individ-
ual bark beetle and pathogen outbreaks (i.e. annual weather
conditions; Table 2). Using this framework, we ask: Can the
occurrence of biotic disturbance hotspots be predicted from
predisposing and inciting factors known to favor individual
biotic disturbance agents?

Methods

Study regions
We studied three broad forested regions within the western
US: the Southern Rockies, Middle Rockies, and Cascades.
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Table 1. Tree-killing biotic agents and multi-species complexes used to identify biotic disturbance hotspots. *Subalpine fir mortality complex
includes the effects of western balsam bark beetle activity, Armillaria root rot, and other mortality agents (Harvey et al. 2021). We treated
western balsam bark beetle and subalpine fir mortality complex as separate agents when identifying hotspots; however, because our defini-
tion of hotspots required that two or more distinct host tree species be affected, we do not expect that doing so inflated our detection of
hotspots. PFive-needle pine decline includes the effects of mountain pine beetle activity and white pine blister rust. We treated mountain
pine beetle and five-needle pine decline as separate agents when identifying hotspots; however, as noted above, we do not expect that doing

so inflated our detection of hotspots.

Common name Scientific name

Host tree species

Bark beetles

Western pine beetle
Jeffrey pine beetle
Mountain pine beetle

Dendroctonus brevicomis
Dendroctonus jeffreyi
Dendroctonus ponderosae

Douglas-fir beetle
Spruce beetle
Western balsam bark beetle

Dendroctonus rufipennis
Dryocoetes confusus

Pinyon ips Ips confusus
Pine engraver Ips pini
Ips engraver beetles Ips spp.

Silver fir beetle Pseudohylesinus sericeus

True fir bark beetles
Douglas-fir engraver
Fir engraver

Scolytus spp.
Scolytus unispinosus
Scolytus ventralis

Multi-agent mortality ‘complexes’
Subalpine fir mortality complex®
Five-needle pine decline®

Pinyon pine mortality

Ponderosa pine

Jeffrey pine

All pine species; primarily lodgepole, ponderosa,
western white, sugar, limber, and whitebark pines

Douglas-fir

Engelmann spruce, Sitka spruce, Brewer spruce

Primarily subalpine fir; occasionally other true firs,
Engelmann spruce, and lodgepole pine

Pinyon pine

All pine species; primarily ponderosa, lodgepole, and Jeffrey pines

All pine species

Primarily Pacific silver fir; occasionally other true firs,
Douglas-fir, western hemlock, and Sitka spruce

True firs

Douglas-fir

Primarily grand fir, white fir, red fir, and noble fir; occasionally
Douglas-fir, subalpine fir, and western hemlock

Subalpine fir

Five-needle pines; primarily limber, Rocky Mountain
bristlecone, and whitebark pines

Pinyon pine

These regions are all mountainous, dominated by coni-
fer forests, and comparable in their spatial extents (each
134 000-144 000 km?), but span a range of forest types
and bioclimatic conditions (Rollins 2009). The topography,
climate, and forest types characterizing these regions are
described in the Supporting information.

Biotic disturbance data

Forest insect and disease impacts are mapped annually
through aerial detection surveys (ADS) conducted by the
USDA Forest Service. During ADS, trained observers are
flown systematically over forested areas in small aircraft;
observers delineate areas of forest damage on maps while
characterizing the type of damage (i.c. identifying both host
tree species and disturbance agent). Ground-truthing has
found that binary (presence/absence) ADS classifications are
approximately 70% accurate when aggregated to 200-1000
m raster cells, which is generally considered sufficient for
broad-scale monitoring (Johnson and Ross 2008, Backsen
and Howell 2013, Coleman et al. 2018).

We obtained ADS data within each of our study regions
for the period 1999-2021 from the USDA Forest Health
Protection program database (USDA 2022a). We filtered the
data to include 13 tree-killing Scolytinae species and three
multi-agent mortality complexes among which mechanis-
tic links are not expected (Table 1). Because damage from
these agents is typically detected one year following host tree
infestation or infection (when foliage of attacked trees begins

to fade), we attributed ADS detections in a given year to
the preceding year (i.e. detection data for 1999-2021 were
attributed to 1998-2020; Meddens et al. 2012, Backsen and
Howell 2013). We rasterized the ADS polygon data to 510-m
cells containing binary indicators for presence/absence of
each disturbance agent, with zeros assigned only to cells that
were surveyed but lacked detection. A 510-m resolution was
selected as a moderately coarse grain to improve ADS clas-
sification accuracy while remaining compatible with finer-
grained 30-m datasets used in our analysis. All rasters were
generated in the USGS contiguous USA Albers projection
using the ‘raster’ package (Hijmans et al. 2022) in R (R Core
Team 2023).

To quantify hotspot occurrence, we identified spatio-
temporal overlaps in disturbance activity attributed to the
16 biotic agents included in our study (Table 1). First, we
defined a hotspot as any 510-m raster cell in which dam-
age caused by > 2 biotic agents and affecting > 2 host tree
species was detected within a three-year window, including
the focal year and prior two years. We used a relatively short
three-year window to define hotspots because our goal was
to identify temporally synchronous hotspots that may result
in compound or synergistic effects, following Harvey et al.
(2023). For a cell to be designated a hotspot in a given
focal year, at least one of the co-occurring agents must have
been detected within that focal year. To increase the com-
putational efficiency of our models, we aggregated these
moderate-resolution (510 m) rasters by a factor of 10, with
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Table 2. Potential predictor variables for hotspot occurrence and prevalence, and hypothesized associations.

Temporally Expected direction of
Category Predictor variable Description variable? effect and justification
Predisposing factors
Forest Host tree co-occurrence  Number of 510-m subcells No Increased potential for
composition containing > 2 potential hotspot occurrence in
host tree species areas where host trees
tend to co-occur
Host tree basal area Average total basal area of host No Increased susceptibility
(m?ha™") species within subcells containing to bark beetle outbreak
> 2 potential host tree species
Host tree richness Average host species richness within ~ No Increased susceptibility
subcells containing > 2 potential to co-occurring biotic
host tree species agents
Topography Heat load index Index of potential direct incident No Increased moisture stress
radiation for host trees
Topographic wetness Index of the long-term moisture No Decreased moisture
index availability of a given site in the stress for host trees
landscape
Average Annual actual Average annual AET, expressed as No Increased vegetation
climate evapotranspiration 30-year normals (1991-2020) productivity
(AET, mm)
Summer maximum Average daily maximums for No Increased moisture stress
vapor pressure deficit June-August, expressed as 30-year for host trees
(VPD; hPa) normals (1991-2020)
Winter minimum Average daily minimums for No Increased overwinter
temperature (°C) December—February, expressed as survival for bark
30-year normals (1991-2020) beetles
Inciting factors
Weather Summer maximum Average daily maximums for June— Yes Increased moisture stress
vapor pressure August, averaged over the 3-year for host trees
deficit (VPD; hPa) hotspot detection window and
expressed as deviations from
30-year normals
Winter minimum Average daily minimums for Yes Increased overwinter

temperature (°C)

December—February, averaged
over the 3-year hotspot detection
window and expressed as

survival for bark
beetles

deviations from 30-year normals

each aggregated 5.1-km cell expressing a binary indicator for
hotspot detection in one or more 510-m subcells (hereafter
referred to as hotspot occurrence) as well as a count of 510-m
subcells in which hotspots were detected (hereafter referred to
as hotspot prevalence). To express hotspot prevalence at the
5.1-km scale as a proportion, we also quantified the number
of subcells with the potential for hotspot detection. Subcells
had the potential for hotspot detection if they were surveyed
every year of the three-year hotspot window and were likely
to contain > 2 co-occurring host tree species (based on host
tree data described in the following section). After account-
ing for the three-year hotspot detection window, our final
dataset included focal years 2000-2020.

Potential predictors of hotspots
As potential predictors of hotspots, we considered predis-
posing factors expected to increase forest susceptibility to
biotic disturbance as well as inciting factors known to trig-
ger individual biotic disturbance events (Table 2; Supporting
information).

Forest composition was characterized using the USDA
Forest Service Individual Tree Species Parameter (ITSP)
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database (USDA 2022b), which provides species-specific
basal area rasters modeled from USES Forest Inventory and
Analysis plot data; 30-m Landsat satellite imagery; and local
climate, terrain, and soils. The ITSP data, which are pub-
licly distributed at a 240-m resolution, represent tree spe-
cies conditions across the US in approximately 2002 (Krist
2014), thus corresponding to the beginning of our biotic
disturbance dataset. We obtained basal area rasters for each
potential host tree species occurring in our study regions
from the ITSP database (Supporting information). We con-
verted these basal area rasters to binary presence/absence
rasters for each species, where we defined presence as > 1
m?ha™" host basal area following Tutland et al. (2023). We
converted all species-specific rasters from a 240-m resolu-
tion to a 510-m resolution by first disaggregating to a 30-m
resolution and then aggregating to a 510-m resolution, with
aggregated basal area and presence quantified as the average
and maximum, respectively, of 30-m subcells. We then cal-
culated total host basal area and richness within each 510-m
cell by summing all host species basal area and presence
rasters, respectively. Finally, we aggregated host tree pres-
ence, basal area, and richness to a 5.1-km scale, where host
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co-occurrence was quantified as the number of 510-m sub-
cells containing two or more host tree species, and basal area
and richness were averaged across those subcells containing
two or more host tree species.

Topography was characterized using a 30-m resolution
digital elevation model obtained from the USGS LANDFIRE
database (Rollins 2009). Heat load index, an index of poten-
tial direct incident radiation ranging from 0 (coolest) to 1
(hottest), was calculated using the ‘spatialEco’ package (Evans
2021, R Core Team 2023) in R following McCune and Keon
(2002) and McCune (2007). Topographic wetness index,
an index of long-term moisture availability, was calculated
in ArcMap (ESRI 2019) according to Beven and Kirkby
(1979). Higher values of the topographic wetness index indi-
cate topographically wetter areas and lower values indicate
topographically drier areas. Both indices were aggregated to a
5.1-km scale by averaging all 30-m subcells.

As an index of site productivity and moisture stress, cli-
matic water balance data were obtained from the TerraClimate
database (Abatzoglou et al. 2018). We obtained actual evapo-
transpiration (AET) rasters at a resolution of 1/24 degree
(approximately 4 km) on a monthly time step for the period
1991-2020. AET represents the amount of water lost from a
surface due to evaporation and transpiration and is used as a
proxy for plant productivity (Stephenson 1990). We summed
monthly actual evapotranspiration by calendar year and aver-
aged the annual rasters to derive a 30-year climate normal.
Finally, we rescaled all rasters from their native 1/24-degree
resolution by first resampling to a 510-m resolution and then
aggregating to a 5.1-km resolution.

Additional climate and weather data were obtained
from the Parameter-elevation Regressions on Independent
Slopes Model (PRISM) database (PRISM Climate Group
2022). We obtained 30-year (1991-2020) climate normals
and annual weather values at a resolution of 1/24 degree
(approximately 4 km), which we rescaled to 5.1-km cells via
resampling and aggregation, as described above. Summer
maximum vapor pressure deficit (VPD) was calculated by
averaging values for June—August of a given year, and win-
ter minimum temperature was calculated by averaging val-
ues for December of the prior year through February of the
focal year. Annual weather values were converted to annual
anomalies by subtracting the corresponding 30-year climate
normals, and anomalies were averaged across the three-year
window corresponding to the temporal window used for
hotspot detection (e.g. for focal year 2007, anomalies were
averaged for years 2005-2007).

Statistical analysis

We used Bayesian spatio-temporal regression models, fit sep-
arately to each study region, to evaluate the relative influence
of predisposing and inciting factors on hotspot occurrence
and prevalence at the 5.1-km scale. The discrete response
(count of subcells in which hotspots were detected) for cell
location s and year # was modeled as a zero-inflated (‘hurdle’
model) binomial random variable Y. The probability density
function takes the following form:

1-— pﬂ’ lf Y:., = O
P(K,) = { Binomial(Y, | N, =)

1 - Binomial(0| Ny, =, )

j,if Y, >0

Here, p, is the probability of hotspot occurrence (i.e. hotspot
detection in at least one subcell), NV, is the number of subcells
with the potential for hotspot detection, and 7, is the success
probability in the binomial function used for positive counts.
The probability of occurrence (Bernoulli) and positive preva-
lence count (binomial) were estimated as separate processes,
each linked to covariates and random effects as follows:

logit(pﬂ) =y, +8X,+¢<,
logit (Tcﬁ) =n,+60X,+o,

Here, the linear predictors for occurrence and prevalence
are modeled as functions of time-varying intercepts y, and
1, respectively, covariates X, and spatio-temporal random
effects €, and o, respectively. The time-varying intercepts
are modeled as year-specific random walks as follows (for v,
with 1, following an analogous form):

Y, ~ Normal (yH ,0, )

The spatio-temporal random effects are modeled as stationary
autoregressive Gaussian random fields as follows (for €, with
o, following an analogous form):

Es,l>1 = ¢ e:,t—l + \/1 - ¢265l

€.~ MVN(0,%;)

s

8, ~ MVN(0,%,)

Here, ¢ (0 < ¢ < 1) is the temporal autoregression param-
eter for the Gaussian random field. The spatial covariance
matrix 25 is modeled using a Matérn covariance function
parameterized by marginal standard deviation o5 and practi-
cal range 7 (the distance at which the spatial correlation drops
to approximately 0.1) (Lindgren et al. 2011).

We fit these models in a Bayesian framework using the
integrated nested Laplace approximation (INLA) and sto-
chastic partial differential equation (SPDE) approaches
(Lindgren et al. 2011, Blangiardo and Cameletti 2015)
(Supporting information). We used penalized complexity pri-
ors for the marginal standard deviations and practical ranges
of the Gaussian random fields, which shrink the marginal
variance toward zero and the practical range toward infin-
ity (Fuglstad et al. 2019). The penalized complexity prior
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approach avoids spatial overfitting and can reduce the poten-
tial for spatial confounding between autocorrelated covari-
ates and spatio-temporal random effects (Mikinen et al.
2022). We used uninformative priors for all other parameters
(Krainski et al. 2019). Models were fit using the ‘R-INLA’
package (www.r-inla.org) in R.

We fit models using only data from those 5.1-km cells
within which > 25% of subcells had the potential for hotspot
detection (i.e. > 25% of subcells both [a] contained > 2 host
tree species and [b] were surveyed each year of the three-year
hotspot detection window). All potential predictor variables,
with the exception of host co-occurrence, were included as
covariates in both the Bernoulli model of hotspot occurrence
and binomial model of hotspot prevalence. The prevalence of
host co-occurrence is in many cases equal to IV, the number
of subcells with the potential for hotspot detection (though
the two are not always equal, with N, accounting not only
for host co-occurrence but also for whether each subcell was
surveyed each year). Since V, is explicitly included in our
binomial model of hotspot prevalence, we excluded the prev-
alence of host co-occurrence as a covariate in that model. We
checked for multicollinearity among covariates using vari-
ance inflation factors (Zuur et al. 2010).

To enable comparison of the magnitude of coeflicients
within each regional model, we standardized all covariates
within each regional dataset by subtracting their means and
dividing by their standard deviations. A covariate was con-
sidered a statistically important predictor if the 95% credible
interval for the coefficient did not include zero. Because we
expected the effects of inciting factors (i.e. annual weather
anomalies) might vary with predisposing climate, we consid-
ered interaction terms between weather anomalies and their
corresponding climate normals. We added interaction terms
to each model only if they were statistically important pre-
dictors and they improved model fit (i.e. decreased model
Deviance Information Criterion by > 10). We calculated
randomized quantile residuals for our zero-inflated binomial
models following Bai et al. (2021) and validated each model
using standard regression diagnostics. To verify inferences
drawn from our models were not affected by spatial autocor-
relation, we evaluated residual autocorrelation using Moran’s
I (Cliff and Ord 1981) and empirical variograms calculated
using the ‘gstat’ package in R (Pebesma 2004).

Results

Observed hotspots

Hotspot occurrence (presence/absence) and prevalence (the
proportion of subcells in which hotspots were detected; a
measure of local hotspot magnitude) exhibited distinct spatial
and temporal patterns within each study region (Fig. 1-3).
Across all 5.1-km cells with the potential for hotspot detec-
tion, annual rates of hotspot occurrence ranged from 3 to
38% in the Southern Rockies, from < 1 to 49% in the Middle
Rockies, and from 10 to 28% in the Cascades (Fig. 1-3).
Within those 5.1-km cells in which hotspot occurrence was
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detected, average annual hotspot prevalence ranged from 3 to
14% in the Southern Rockies, from 2 to 15% in the Middle
Rockies, and from 5 to 16% in the Cascades (Fig. 1-3). In
both the Southern Rockies and Middle Rockies, hotspot
occurrence and prevalence peaked between 2003 and 2008,
whereas occurrence and prevalence in the Cascades peaked
around 2009 and again from 2014 to 2017 (Fig. 1-3).

The individual biotic agents and multi-species com-
plexes contributing to hotspot occurrence varied by region
(Supporting information). In the Southern Rockies, mountain
pine beetle, subalpine fir mortality, and spruce beetle were the
most common agents contributing to hotspot occurrence; at
the 510-m scale, mountain pine beetle was detected in 49%
of hotspots, while subalpine fir mortality and spruce beetle
were detected in 28% and 27% of hotspots, respectively. In
the Middle Rockies, mountain pine beetle, five-needle pine
decline, and subalpine fir mortality were the most common
agents, being detected in 67%, 21%, and 19% of hotspots,
respectively. In the Cascades, fir engraver, mountain pine
beetle, and western pine beetle were most common and were

detected in 53%, 41%, and 23% of hotspots, respectively.

Effects of predisposing and inciting factors

Hotspot occurrence (presence/absence) and prevalence (local
magnitude) were affected by each of the predisposing factors
considered in our analysis, with the strength and direction
of effects varying by region (Fig. 4; Supporting informa-
tion). Forest composition had the strongest and most con-
sistent effect on hotspot occurrence and prevalence; across
study regions, hotspot occurrence consistently increased with
host co-occurrence (number of subcells containing two or
more host tree species; a measure of the extent of host spe-
cies overlap), and hotspot occurrence and prevalence both
consistently increased with total host basal area and richness
(Fig. 4). Decreases in hotspot occurrence and prevalence were
consistently linked with increases in normal summer VPD
and topographic heat load, though the magnitude of the
effect of topographic heat load was small (Fig. 4).

All other predisposing factors considered in our analy-
sis had variable effects across regions. Hotspot occur-
rence decreased with increasing topographic wetness in the
Southern Rockies and Cascades, whereas hotspot prevalence
increased with topographic wetness in the Middle Rockies.
Hotspots decreased with increasing normal AET in the
Middle Rockies but strongly increased with normal AET
in the Cascades; in the Southern Rockies, effects of AET
were mixed, with hotspot occurrence increasing but hotspot
prevalence decreasing with increasing AET (Fig. 4). Finally,
hotspot occurrence and prevalence decreased with normal
winter minimum temperature in the Southern Rockies,
whereas normal winter temperature had no detectable effect
in the Middle Rockies (Fig. 4). Winter temperature normals
could not be included in the models for the Cascades due to
collinearity with AET (Fig. 4).

Across study regions, inciting factors had the strongest
effects in the Southern Rockies (Fig. 4). Hotspot occurrence
and prevalence increased with increasing winter temperature
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Figure 1. Hotspots in the Southern Rockies region, US (EPA Level IIT Ecoregion 21). (a) Observed spatio-temporal patterns of hotspot
occurrence (presence/absence) and prevalence (local magnitude) within 5.1-km cells with the potential for hotspot detection. Surveyed cells
in which zero hotspots were detected are shown in light gray; for those cells in which > 1 hotspots were detected, hotspot prevalence is
expressed as the proportion of 510-m subcells in which hotspots were detected. Thin gray lines represent US state boundaries. (b) Observed
temporal patterns of hotspot occurrence. (c) Observed temporal patterns of hotspot prevalence within those 5.1-km cells in which > 1

hotspots were detected. Note the log-transformed scales in (a) and (c).

anomalies in the Southern Rockies, with the negative inter-
action between normals and anomalies suggesting that
winter temperature anomalies have weaker effects in loca-
tions with warmer normal winter temperatures (Fig. 4).
Similarly, hotspot prevalence increased with summer VPD
anomalies in the Southern Rockies, with the positive interac-
tion between normals and anomalies suggesting that sum-
mer VPD anomalies have stronger effects in locations with
greater normal summer VPD (Fig. 4). We detected no effect
of inciting factors on hotspot occurrence in either the Middle
Rockies or Cascades (Fig. 4). Hotspot prevalence decreased
with increasing winter temperature anomalies in the Middle
Rockies, increased with winter temperature anomalies in the
Cascades, and increased with summer VPD anomalies in
both regions, though the magnitudes of these effects were all
relatively modest (Fig. 4).

Spatio-temporal random effects

Compared to the fixed effects estimated in our models, the
temporal and spatio-temporal random effects were greater in
magnitude and more closely correlated with model-predicted
hotspot occurrence and prevalence (Fig. 5; Supporting infor-
mation). Odds ratios associated with a one standard devia-
tion increase in estimated random effects ranged from 11.3

to 30.1 for hotspot occurrence and from 2.7 to 3.8 for preva-
lence. In contrast, odds ratios associated with a one standard
deviation increase in estimated fixed effects only ranged from
2.3 to 4.5 for hotspot occurrence and from 1.8 to 2.2 for
prevalence. Overall, odds ratios for random effects were 1.5—
13.1 times greater than those for corresponding fixed effects
(Supporting information).

The temporal and spatio-temporal random effects esti-
mated in our models reflect the distinct patterns and trends
in hotspots across our study regions (Supporting informa-
tion). Peaks in the time-varying random intercepts largely
corresponded with peaks in the observed hotspots data
(Supporting information). The estimated practical range r
(distance at which spatial autocorrelation approaches zero)
varied from 55 to 85 km across regions for hotspot occurrence
and from 35 to 40 km across regions for hotspot prevalence.
Spatial patterns of hotspots were strongly persistent from
year to year, with the temporal autoregression parameter ¢
for the spatial random fields varying from 0.88 to 0.93 across
all models. Our models accounted for most of the spatio-
temporal correlation in our data, with empirical variograms
of model residuals suggesting some residual autocorrelation,
but only at very short distances (i.e. < 10 km) relative to the
extents of our study regions (Supporting information).
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Figure 2. Hotspots in the Middle Rockies region, US (EPA Level III Ecoregion 17). (a) Observed spatio-temporal patterns of hotspot occur-
rence (presence/absence) and prevalence (local magnitude) within 5.1-km cells with the potential for hotspot detection. Surveyed cells in
which zero hotspots were detected are shown in light gray; for those cells in which > 1 hotspots were detected, hotspot prevalence is
expressed as the proportion of 510-m subcells in which hotspots were detected. Thin gray lines represent US state boundaries. (b) Observed
temporal patterns of hotspot occurrence. (c) Observed temporal patterns of hotspot prevalence within those 5.1-km cells in which > 1

hotspots were detected. Note the log-transformed scales in (a) and (c).

Discussion

Our study investigates the patterns, trends, and drivers of
biotic disturbance hotspots across three forested regions in
the western US. Biotic disturbance hotspots occurred widely
throughout the western US in the early part of the 21st cen-
tury (2000-2020), with distinct patterns characterizing each
of our three study regions. Using a spatio-temporal modeling
approach, we found that predisposing and inciting factors
both contributed to hotspot occurrence, with forest compo-
sition and structure being consistent drivers and other effects
varying with the unique biophysical characteristics of each
region. Relative to the predictor variables included in our
analysis, we found that the random spatio-temporal effects
estimated in our models were stronger and more closely cor-
related with hotspot predictions, suggesting that dynamic fac-
tors such as outbreak spread strongly shape patterns of biotic
disturbance hotspots. These findings provide an understand-
ing of interacting biotic disturbance agents in the western US
during a period when climate and biotic disturbance regimes
were both changing.
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Hotspots occur widely and have implications for

forest resilience

The widespread nature of biotic disturbance hotspots across
the western US carries important implications for forest
resilience in a period of increasing biotic disturbance activ-
ity. Biotic disturbance hotspots are an emerging ecological
phenomenon (Harvey et al. 2023), and this study provides
a foundational understanding of their spatial and temporal
patterns in recent decades. While interannual trends varied
regionally, each of our study regions experienced years in
which hotspots were detected within > 28% of 5.1-km cells
with the potential for hotspot occurrence, with annual occur-
rence rates as high as 49% observed in the Middle Rockies.
Forest disturbances caused by a single host-specific agent are
often followed by robust compensatory responses facilitated
by increased growth of surviving non-host trees (Veblen et al.
1991, Buonanduci et al. 2023). These compensatory
responses underpin forest recovery and continuity in forest
function (Romme et al. 19806), serving as important mecha-
nisms of forest resilience. In forests affected by biotic distur-
bance hotspots, however, compensatory responses could be
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Figure 3. Hotspots in the Cascades region, US (EPA Level III Ecoregions 4, 9, and 77). (a) Observed spatio-temporal patterns of hotspot
occurrence (presence/absence) and prevalence (local magnitude) within 5.1-km cells with the potential for hotspot detection. Surveyed cells
in which zero hotspots were detected are shown in light gray; for those cells in which > 1 hotspots were detected, hotspot prevalence is
expressed as the proportion of 510-m subcells in which hotspots were detected. Thin gray lines represent US state boundaries. (b) Observed
temporal patterns of hotspot occurrence. (c) Observed temporal patterns of hotspot prevalence within those 5.1-km cells in which > 1
hotspots were detected. Note the log-transformed scales in (a) and (c).
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covariates, and (d) random temporal and spatio-temporal effects. Hotspot occurrence in the Southern Rockies in 2007 is shown here as a
representative example. Note the visual correspondence between (a), (b), and (d), reflecting the strong influence of spatio-temporal random

effects in our models.

eroded due to the spatially synchronous mortality of multiple
host tree species. Compared to forest disturbances caused by
single biotic agents, overall tree mortality may not necessarily
be more severe in areas affected by hotspots (Tutland et al.
2023); however, the mechanisms and rates of forest recov-
ery are likely to be altered (Harvey et al. 2023). Thus, the
widespread nature of biotic disturbance hotspots has impor-
tant implications for forest resilience as climate continues to
change and biotic disturbance activity continues to increase.

Forest composition and structure are consistent

drivers of biotic disturbance hotspots, while other
factors vary with biophysical context

Biotic disturbance hotspots are strongly and consistently
driven by the abundance, richness, and spatial distributions
of host trees. Even after constraining our analysis to those
areas where hotspots could potentially be detected (i.e. sur-
veyed areas where two or more potential host tree species
were likely to be present), hotspot occurrence and prevalence
increased with host basal area and richness, suggesting that
forested areas characterized by a greater amount of host bio-
mass and number of host tree species are most susceptible
to biotic disturbance hotspots. Individually, biotic agents
are most likely to occur where host tree basal area is high
(Shore et al. 2000, Fettig et al. 2007), and it logically follows
that the likelihood of overlapping biotic agents is greatest
where multiple host species co-occur and host basal area is
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high. Forest types vary strongly along elevational gradients in
each of our study regions, thus our finding that hotspots var-
ied with climate normals also likely reflects the climatic niches
of individual host tree species and thus the influence of host
species distributions on hotspot occurrence. For example, the
most prevalent biotic agents contributing to hotspot occur-
rence in our study regions were those known to attack pine,
fir, and spruce trees (Table 1, Supporting information). Pine,
fir, and spruce largely tend to co-occur at higher elevations
in our study regions, where climate is characterized by lower
summer VPD and winter temperature. Thus, our finding that
hotspot occurrence increased in areas characterized by lower
winter temperature and summer VPD could be attributed to
the increasing overlap of pine/spruce/fir at higher elevations.

The effects of other predisposing and inciting factors
were variable, reflecting the unique biophysical character-
istics of each region. For example, the variable effects of
annual AET (a proxy for plant productivity) across regions
likely stems from their differing levels of productivity. The
western Cascades are some of the most productive for-
est ecosystems in the world (Waring and Franklin 1979,
Watson et al. 2015, Spies et al. 2018), with greater annual
AET and host basal area than both the Middle and Southern
Rockies (Supporting information). It is possible that the dif-
fering effects of AET observed across our study regions are
related to the complex growth—defense tradeoffs that occur
in host plants (Herms and Mattson 1992, Kane and Kolb
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2010, Vézquez-Gonzdlez et al. 2020). Since tree-killing bark
beetles prefer mature hosts with thicker phloem (Amman
1969), high growth rates may increase infestation probability
(Cooper et al. 2018) in areas where productivity is gener-
ally high. Conversely, in areas where productivity is gener-
ally more limited, growth—defense tradeoffs may be amplified
(Vazquez-Gonzélez et al. 2020), and host trees may allocate
more resources to defense rather than growth. This tradeoff
could potentially explain the positive association between
annual AET and hotspots that we observed in the Cascades, a
highly productive region, versus the negative and mixed asso-
ciations observed in the less-productive Middle and Southern
Rockies (Watson et al. 2015).

Similarly, our finding that inciting factors (i.e. annual
weather anomalies) were most important for predicting
hotspots in the Southern Rockies likely stems from the dif-
fering climate conditions characterizing each of the study
regions. For example, winter minimum temperatures gener-
ally increase from the Middle Rockies to the Southern Rockies
to the Cascades (Supporting information). Concurrently,
overwintering survivorship of tree-killing bark beetles, which
as a group are a dominant biotic disturbance agent across all
regions, is generally lowest in the Middle Rockies and highest
in the Cascades, with the Southern Rockies falling in-between
(Bentz et al. 2010). Annual weather anomalies are likely to
have a greater influence on biotic disturbance activity in areas
where climate straddles important temperature thresholds
for bark beetle survival and reproduction (Raffa et al. 2008,
Bentz et al. 2010). Thus, it is possible that weather anoma-
lies could be more likely to incite hotspot occurrence in the
Southern Rockies where climate conditions suitable to bark
beetle outbreak fall within an intermediate range and where
proximity to temperature thresholds is therefore important.
Although winter minimum temperatures in the Southern
Rockies were not likely cold enough during our study period
to be lethal to mountain pine beetle (the most common agent
contributing to hotspots in this region), warm winter tem-
peratures may also allow for earlier emergence and potential
decreases in the duration of subsequent beetle generations,
thus providing favorable conditions for beetle population
growth (Chapman et al. 2012, Bentz et al. 2014).

Dynamic factors, including outbreak spread, play an
important role in shaping biotic disturbance

hotspots

The temporal and spatio-temporal random effects estimated
in our models contributed strongly to model predictions and
closely mirrored observed hotspot patterns and trends, sug-
gesting that dynamic factors such as outbreak spread play
an important role in shaping biotic disturbance hotspots.
Biotic disturbances are stochastic processes, with local and
regional population pressure of biotic agents strongly shaping
the dynamics of bark beetle and plant pathogen outbreaks
(Raffa et al. 2008, Preisler et al. 2012, Linnakoski et al. 2019,
Howe et al. 2021). The strong spatio-temporal correlation
in our dataset and high year-to-year persistence of hotspots
suggest that biotic disturbance hotspots are also stochastic

processes that can emerge as a by-product of the dynamic
nature of individual outbreaks. We found that temporal and
spatio-temporal random effects were more closely correlated
with hotspot occurrence and prevalence than the covariates
included in our models, suggesting that the strongest predic-
tor of hotspot occurrence at any given location and time is
whether other hotspots occurred nearby or in a previous year.

Each of the three study regions was affected by broad-scale,
synchronous bark beetle outbreaks and increasing wildfire
activity during our study period (2000-2020), likely contrib-
uting to the patterns and trends in hotspots that we observed.
In particular, regional outbreaks of mountain pine beetle have
been well-documented across the western US in the eatly part
of the 21st century (Raffa et al. 2008, Chapman et al. 2012,
Preisler et al. 2012), and mountain pine beetle was a primary
contributor to hotspot occurrence across our study regions.
The temporal trends estimated in our models, particularly
the peaks in hotspots occurring from 2003 to 2008 in the
Southern and Middle Rockies (Supporting information),
mirror the rapid growth followed by decline in mountain pine
beetle populations observed in these regions (Chapman et al.
2012, Meddens et al. 2012). Rapid depletion of available live
host biomass with outbreak progression often plays a key role
in ending regional-scale outbreaks (Raffa et al. 2008), as sufli-
cient live host trees are necessary to sustain bark beetle popu-
lations. Similatly, the spatial legacies of wildfire can strongly
shape the likelihood and patterns of bark beetle and pathogen
outbreaks, ecither through host tree injury that may increase
host susceptibility to subsequent colonization or infestation,
or through host tree mortality that may decrease the avail-
ability of live host biomass required for subsequent outbreaks
(Simler-Williamson et al. 2021, Howe et al. 2024). Because
species-specific and temporally explicit tree biomass esti-
mates are not currently available at the spatial resolutions and
extents modeled in our study, we were only able to include
one static estimate of host tree basal area in our models. Thus,
while we were not able to explicitly account for the loss in
live host biomass caused by regional-scale outbreak or wild-
fire activity, the random effects estimated in our models effec-
tively capture these trends.

Study limitations and directions for future research
Aerial detection surveys provide critical data for broad-scale
mapping of biotic forest disturbances but are not without
limitations. Despite efforts to standardize data collection
procedures (McConnell et al. 2000), aerial sketchmapping is
inherently subjective in nature (Johnson and Wittwer 2008).
Semi-automated satellite remote sensing approaches offer
an improvement over ADS data in terms of spatio-temporal
coverage and resolution (Rodman et al. 2021). However,
ADS data perform better with respect to damage attribution
and offer sufficient accuracy at coarse scales, thus remaining
the best available option for monitoring interactions among
biotic disturbance agents across regional extents.

We took a broad approach in our analysis, lumping
numerous tree-killing biotic agents and host tree species. By
design, our results reflect the patterns and drivers of biotic
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disturbance hotspots generally, rather than specific combina-
tions of biotic agents. Some biotic disturbance agents may
be more likely to co-occur in space and time (e.g. agents tar-
geting commonly co-occurring host trees and responding to
similar environmental conditions), while others may be less
likely to co-occur (e.g. agents targeting less commonly co-
occurring host trees, responding to different environmental
conditions, and/or functioning as competitors). Therefore,
further research could focus on specific combinations of
agents that may be of interest, such as the mountain pine bee-
tle and spruce beetle, two species that occur widely through-
out North America, tend to co-occur due to the extensive
overlap of their host genera, respond similarly to many cli-
matic drivers, and can each cause widespread tree mortality
during regional outbreaks (Bentz et al. 2022, Harvey et al.
2023, Andrus et al. 2025). Additionally, we focused on tem-
porally synchronous overlaps of agents that are not expected
to be mechanistically linked. Future research could also focus
on temporally lagged hotspots that may be occurring due to
expected or novel mechanistic links.

Finally, our study focused on regional-scale patterns and
trends. We identified biotic disturbance hotspots at a coarse
spatial resolution (i.e. co-occurrence within 510-m or 26-ha
grid cells, further aggregated to 5.1-km or 2600-ha grid cells)
to reduce model complexity and enable modeling these pat-
terns over broad spatial extents. Our methodology harnessed
a variety of data products to represent potential drivers of
hotspots (i.e. forest composition, topography, climate, and
weather), which required aggregating these data to a com-
mon spatial scale. The process of aggregating or ‘coarse-grain-
ing’ data has the potential to result in a loss of information,
in particular an inability to account for extreme events or
conditions occurring at finer scales, and is a common chal-
lenge in balancing tradeoffs between model grain and extent
(Newman et al. 2019). Complementary research at finer
spatial scales will be important for further elucidating the
mechanisms driving hotspots and the ways in which forests
respond.
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