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Mathematical models serve a number of roles in
understanding sexually transmitted infection
epidemiology and control. This article seeks to provide
the non-mathematician with a description of their
construction and use and presents illustrative examples
from sexually transmitted infection epidemiology.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The epidemiology of infectious diseases has
moved beyond identifying aetiological agents
and risk factors to a more detailed under-

standing of the mechanisms controlling the
distribution of infections and disease in
populations.1 Mathematical models provide an
explicit framework within which to develop and
communicate an understanding of infectious dis-
ease transmission dynamics.2 Because we can
identify the contacts necessary for the spread of
sexually transmitted infections (STIs) they pro-
vide an interesting subject for mathematical
models and substantial progress has been made
in model development.3–9 However, the language
of mathematics can be intimidating for those
unused to it. This can often lead to interesting
work being ignored, or, more significantly, the
uncritical acceptance of the results of models.
Often mathematical modellers are responsible,
either by describing complex and irrelevant
detail, or, alternatively, simply presenting a “black
box” without ever explaining the assumptions
that are critical to the results derived. In the pres-
entation of mathematical models a balance is
required so that sufficient and comprehensible
descriptions can move the subject forward under
the critical scrutiny of the scientific community.
This paper aims to provide an overview of the
terms and methods used in mathematical models
and a brief illustration of the use of models in
sexually transmitted disease (STD) epidemiology.

THE FUNCTIONS OF MATHEMATICAL
MODELS
The process of describing a system like the spread

of an infectious disease forces one to recognise

the assumptions made, the data available to esti-

mate parameter values, and allows for qualitative

or quantitative predictions that can be tested by

comparison with experimental or observed pat-

terns. Thus, the central role of creating and

analysing mathematical models is to develop our

understanding of a system. Once the transmis-

sion dynamics of an infectious disease are appro-

priately described by a model it is possible to

evaluate the potential impact of proposed inter-

ventions. Models should assist in the identifica-

tion of successful interventions, their necessary

scale, and the role or ability of new technologies

to deliver public health benefits. Often math-

ematical models are called upon to forecast the

future. This has been particularly true for HIV

where many models have been used with varying

success.10–13 It is important to understand the

limitations placed on forecasts by the poor quality

of available data, uncertainty about parameter

values, non-linearities in the system, and chance

events.

In sexually transmitted disease epidemiology

mathematical models can describe the position of

individuals within the network of sexual partner-

ships via which infections spread allowing a more

complete identification of risks for acquiring and

transmitting infection.5–9 The population patterns

of STI incidence can be simulated based upon

descriptions of patterns of sexual behaviour and

pathogen biology and compared with observed

patterns to test our understanding.14–16 Subse-

quently, the consequences of health policy, such

as poor access to care delaying STD treatment, or

the use of screening for asymptomatic cases, can

be calculated.17

TERMINOLOGY
The methods used in modelling reflect both aims

and stage of development. Models can be catego-

rised by a number of key criteria.

Compartmental versus distributional
There are different ways of representing the mod-

elled variables. For example, a group of people

with an infection could all be grouped together as

a “compartment” of infecteds, Y, or we could

explore the distribution of severity of disease, s, in

the population, where y(s) is the number with

disease of severity s and the total population of

infecteds Y is the sum of those in all the different

levels of severity, s. A compartmental model of

gonorrhoea might divide the population into

those susceptible, symptomatically and asympto-

matically infected, whereas a distributional

model could describe gradations of symptoms,

perhaps related to the size of the gonococcal

colony or the level of immune response.

Discrete versus continuous
Change in the model population can take place

either as a smooth continuous process or in

discrete steps. In the former differential calculus

developed to explore changes in one variable with

a diminishingly small change in another variable

is used, whereas in discrete models, difference

equations, which reflect the change over the
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whole time step are used.18 The sexual interactions allowing

the spread of STIs occurs continually, so most models of STIs

are “continuous.” However, for ease of calculation some might

use discrete time steps. For example, in demography because

of the availability of fertility and mortality rates in 5 year age

groups the United Nations uses 5 year time steps to project

population growth.19 To include the impact of STDs on fertility

and mortality in such models requires their impact to be

apportioned over 5 year periods.

Deterministic versus stochastic
In a deterministic model events are not subject to chance and

two realisations of a model using the same parameters and

exact starting conditions will give exactly the same results.

However, results can diverge in the case of deterministic chaos

because it is impossible to exactly specify starting conditions

and the value of variables. There is debate over the role of

chaos in measles where small differences in the fraction

infected during troughs in incidence grow into larger

differences as infection spreads.20 Sexually transmitted dis-

eases do not display this boom and bust pattern, probably

because the limited chances of spread have led to more stable

mechanisms of persistence. In stochastic models chance is

taken into account. There are a number of ways to allow the

events in a model to be influenced by chance, but the most

common and rigorous method is Monte Carlo simulation,

where the set of possible next events is defined with a

probability attached to each. A random number generator is

then used to calculate when the next event will occur and

which of the range of possible events it will be.21 One of the

advantages of stochastic models is that the distribution of

expected outcomes following from a given set of parameters

can be generated allowing an exploration of the ability of a

model to explain observed pattern. With recent increases in

the speed of computers stochastic models have become more

convenient and should have an important role in understand-

ing the persistence and control of the bacterial STDs when

they are at a low prevalence.

Population averages versus individual based
simulations
An important distinction in the modelling of sexually

transmitted infections is whether the population is repre-

sented in groups with average rates of contact, risk of

transmission, and progress through stages of infection or

whether individuals and their contacts are explicitly simu-

lated. The latter level of detail provides a powerful tool as it

allows microstructures in the dynamic network of sexual

partnerships to be included.4 6 22 However, it carries significant

costs in both identifying parameter values and interpreting

which measures are significant in generating results. In

between the extremes of a homogeneous population and indi-

vidual based simulation it is possible to divide the population

into groups with similar characteristics—for example, of a

similar age, sex, or patterns of sexual activity. Thus, the

observed heterogeneity in the population can be captured by

stratifying the model population. Much of our initial

understanding of the epidemiological consequences of the

natural history of STDs has been based on studies using

population averages,3 understanding more detailed sexual

network data has required individual based simulation

models.7

Linear versus non-linear
In linear models the state variables are a simple function of

one another with very predictable results, whereas non-linear

models are more complex. For infectious diseases the

transmission term is assumed to be non-linear as it is a func-

tion of the interaction between infectious and susceptible

individuals. Many health economic models make linear

assumptions—that is, treating one more individual reduces

the number of cases by one. However, there are knock on

effects which depend upon the epidemiological context. For

example, in figure 1A the impact of a prophylatic vaccine in a

homogeneous population (that is, everyone has the same pat-

tern of risk behaviour) is illustrated. If we assume absolute

protection, increasing coverage has a linear impact on

prevalence, because it simply removes individuals from the at

risk population, whereas the impact of a vaccine that reduces

susceptibility increases as it moves towards eliminating infec-

tion.

Analytical versus numerical solution
Often for simple models exact mathematical solutions are

possible which provide powerful insights into the relation

between parameter values and results. Such solutions are

often more precise and elegant. The conceptual understanding

of the impact of a vaccine shown in figure 1A comes from

analytical solutions. However, as models increase in complex-

ity it is often necessary to resort to numerical solution. Here

specific parameters are entered and the results calculated. The

inclusion of sex, age, and sexual activity in the model used to

illustrate the impact of a potential HIV vaccine (fig 1B) neces-

sitates numerical solution. Standard methods are available

which reduce the errors in deriving results.23 Sensitivity

analysis allows the impact of varying parameters to be

Figure 1 The relation between vaccine efficacy and the prevalence
of infection. (A) In a homogeneous population where individuals are
fully susceptible, vaccinated, or infected, the vaccine provides two
types of protection: “degree”—where for all vaccine recipients
efficacy is the fraction of challenges from which they are protected
and “take”—where efficacy is the fraction of individuals protected
from all challenges. (B) The predicted impact in a model stratified
according to sex, age, and sexual activity of an HIV vaccine, with a
mean duration of protection of 10 years, introduced after a decade
of spread in a generalised HIV epidemic (protection is lost at a
constant rate generating an exponentially distributed duration of
protection). There are assumed to be two levels of efficacy (50% and
95%) and two types of protection—degree and take.
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explored,24 but such sensitivity analyses are unnecessary for

analytical solutions where the influence of changing a para-

meter is explicit within the model solution.

Sensitivity and uncertainty versus scenario analysis
In sensitivity analysis combinations of parameter values are

chosen at random to explore how the model results are altered

by changes in parameters, whereas in uncertainty analysis the

impact of potential errors in parameter values is explored.

Such approaches often mislead as results depend on model

structure as well as parameter values. In scenario analyses

illustrative results with chosen sets of parameter values are

derived and presented. The numerical solutions describing the

impact of a hypothetical HIV vaccine (fig 1B) would be classed

as scenario analysis. In figure 2 we illustrate the relation

between the duration of infectiousness and the transmission

probability and the prevalence of a simple sexually transmit-

ted infection. Each line is a univariate sensitivity analysis and

applies only for the set of other parameter values, which

remain fixed. The importance of this is illustrated by varying

the pattern of mixing which alters the impact of the biological

parameters. To explore parameter space in more depth we

might sample parameter values at random which was done for

a model of trichomoniasis because of the number of poorly

estimated parameters.15

Quantitative versus qualitative
One of the paradoxes in modelling infectious diseases is that,

despite their quantitative nature, the best that we can often

expect is qualitative insights. The difficulty of including all

relevant factors, the imprecise measurement of biological and

behavioural variables, and the extreme sensitivity of many

non-linear systems to small changes in parameter values are

frequently insurmountable obstacles to accurate quantitative

prediction. None the less, valid qualitative insights can assist

policy creation, and in the absence other sources, the evidence

of a carefully constructed and defended theory is a better

guide than guesswork or intuition. For example, we might be

interested in the potential for condoms to control the

transmission of HIV. Quantifying the relation between the

number of condoms used and the incidence of HIV is

confounded by imprecise data on the frequency of sex in at

risk partnerships. However, qualitative predictions are possi-

ble. The observed heterogeneity between partnerships in the

per sex act transmission probability of HIV25 indicates that

condoms need to be used consistently rather than intermit-

tently within a sexual relationship to have any impact.
The construction of a simple compartmental, continuous,

deterministic, non-linear model of an infection in a homoge-
neous population and its analytical solution is described in the
box on the next page.

MODELS AND POLICY
A key function of models is to predict the consequences of

changes such as those caused by interventions. The models

provide a tool to translate the changes in patterns of behaviour

or biology into an impact on infection and disease. Through

exposure to economic models policy makers are predisposed

towards their use in decision making and models have the

advantage that they can be rapidly deployed when there is

insufficient time for field and laboratory studies. Models have

significant roles if they generate counterintuitive results (for

example, the potential increase in early syphilis that could

result from treating latent syphilis14 26) or include the knock on

consequences of an intervention not captured in standard

health economic analyses (for example, the potential benefits

of an HIV vaccine that could reduce the infectiousness of

breakthrough infections27). It is often not necessary to include

in full detail the complexity of the system to generate valid

results, only sufficient complexity is required. For example, in

exploring the elimination of syphilis, stochastic models that

represent individual infections are required. In deterministic

large population approximations an impossibly tiny fraction of

infectious individuals could persist and subsequently reintro-

duce infection. Validation of models is important when appro-

priate data are available to test the models. However, convinc-

ing explanation of the causes of results and factors that have

the potential to invalidate them often have to suffice. The fol-

lowing examples illustrate the use of mathematical models in

sexually transmitted disease epidemiology.

Models as a framework for data analysis: a global HIV
model
Mathematical models cannot replace surveillance data, but as

data accrue they can provide a framework to analyse and

communicate results. Recent work by a UNAIDS reference

group has generated a simple and flexible model of the HIV

epidemic which provides a framework for the analysis of sero-

prevalence data from around the globe.28 Using maximum

likelihood methods the parameters for this model can be esti-

mated from the prevalence data available (fig 3). The initial

rate of growth of the epidemic depends largely on a

“transmission coefficient”, r, where the epidemic peaks

depends on the initial fraction at risk, f0, and where the

epidemic stabilises depends upon the strength of changes in

recruitment to the at risk population in response to AIDS

deaths (determined by the value of φ). These three values,

along with the start time of the epidemic, are estimated from

local seroprevalence data, whereas the period between HIV

and death, and the birth and death rates are estimated sepa-

rately and entered. Examples of the use of the model in

Uganda and Benin are illustrated (fig 3). The reliability of the

resulting HIV curves depends upon the availability and valid-

ity of prevalence data. Because such a model is meant to be

universally applicable and based on the observed outcome of

the epidemic it sheds little light upon the local causes of HIV

spread and does not include the detail required to provide

insight into interventions.

Understanding interventions: mass antibiotic
administration
Within mathematical models we can explore the relation

between the outcome of an intervention and its impact. In

developing such models data from a wide range of sources can

be combined to define the epidemiological context. In the

planning stage of an intervention modelling enables us to

evaluate the intervention’s potential and set meaningful

targets. Additionally, models assist the interpretation of inter-

vention trials, explaining observed results and how they might

translate when moved to a different epidemiological context.

For example, the expected impact of mass antibiotic adminis-

tration on the prevalence of trichomoniasis and gonorrhoea is

Figure 2 The endemic prevalence a sexually transmitted infection
in a heterosexual population stratified according to rates of sexual
partner change. The STI is described by a susceptible-infectious-
susceptible compartmental model. The endemic (steady state)
prevalence is plotted for different biological parameter values with
an average rate of partner change of 2 for different patterns of
mixing defined on a scale from assortative (like with like) to random
according to rates of sexual partner change.
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compared with syndromic management and illustrated in fig-

ure 4. The coverage and interval between rounds represented

is that estimated in the Rakai trial and the results of the

determinist model are compared with those from the trial.29

The rebound of prevalence following a single round of

antibiotic administration is illustrated. This is expected to be

faster for gonorrhoea with its high transmission probability

than for trichomoniasis. The model is in better agreement for

trichomoniasis than gonorrhoea. In the latter case the

deterministic model predicts a second rapid rebound after the

second round of treatment. However, the low prevalence of

infection following treatment will increase the influence of

chance delays in the growth of the epidemic. The slower

bounce back for trichomoniasis explains the observed

reduction in prevalence in the second round of screening.

Because of the previous low level of symptom recognition

syndromic management is expected to have very little impact

on the prevalence of infection. The observed impact indicates

either a background trend of decreased STD prevalence,

perhaps associated with AIDS mortality and HIV education

The construction of a simple mathematical model

The model described here is a representation of an infection that causes no acquired immunity. The flow diagram is a means
of illustrating the model population, which is compartmentalised into two categories or “state variables”—susceptible or
infected.

dX/dt = rate of change in X with respect to time.
People can be in one of these two states, which are represented by boxes. The movement of people in the population is

represented by arrows. Such a flow diagram is simply turned into a set of ordinary differential equations. An ordinary differ-
ential equation represents the instantaneous rate of change in a state variable with respect to another variable, in this case
time. We have an equation for each of the two state variables, dX/dt, for the rate of change in susceptible numbers with
respect to time, and dY/dt, for those infectious. The flows shown as arrows are calculated using the terms on the right hand
side of the equations: a flow out of a box is taken away from a state variable and is a negative term, whereas a flow into a
box is added to the state variable, and is a positive term. In the illustration the flows are numbered to show how the terms in
the two equations correspond to the arrows in the flow diagram. To derive the terms we need to make assumptions about the
flows—for example, initial entry into the susceptible population is by births, termed B in our equation. This could be a number
that is consistently recruited each year regardless of the population size. Alternatively, it could be a function of the population
size, N, and the birth rate for the average individual in the population, r, such that B=rN. To maintain a constant population
size we assume the birth rate equals the death rate, B=ìN. The critical assumptions made about our infection above are that
an average susceptible X makes c contacts per unit time; that the fraction of these contacts that are infectious is simply the pro-
portion of the total population infected, Y/N and that there is a chance â of transmission on each contact between an infected
and a susceptible individual. Thus, the instantaneous total incidence of infection is X câ(Y/N) and the instantaneous incidence
per susceptible (often described as the force of infection, ë) is câ(Y/N). The recovery rate in the above equations is assumed
to occur at a constant per infected rate í, irrespective of how long someone has been infected. This assumes that a cohort of
infecteds will decay exponentially with an average duration of infection given by 1/(í + ì).

This simple model can be solved analytically, with the equilibrium values being those where the two rates of change are
zero. One equilibrium, the disease free state, occurs when there are no infections. The other equilibrium, the endemic steady
state, occurs when each new infection causes one more new infection. The value of the basic reproductive number R0 , which
is given by R0 = câ/(í + ì), determines which equilibrium is stable. When it is less that one the disease free state is stable
alternatively the endemic steady state is stable when it is above one. It should be noted that the basic reproductive number
holds for the disease free boundary, as prevalence increases exposures are wasted on those already infected. The reproduc-
tive number at time t, depends on the basic reproductive number and the proportion of the population susceptible: Rt = R0

(X/N). At the steady state its value equals one, and because the proportion infected is 1 − (X/N) we can re-arrange the equa-
tion to derive the endemic prevalence Y/N = 1 − (1/R0).
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messages, or that exposure to the trial in the control popula-

tion had an influence on other epidemiological parameters—

for example, recognition of symptoms or condom use. In ret-

rospect, more rapid follow up and administration of

antibiotics would have enhanced gonorrhoea control within

this trial, but may not have been practical. Model results

suggest that the main role of presumptive therapy should be

more frequent use in those with a high risk of acquiring and

transmitting infection.

The impact of new technology: low efficacy HIV
vaccines
The above conclusions are the more believable because they

agree with our intuition (admittedly with the great advantage

of hindsight). However, results may not always agree with

intuition. For example, we are very used to the high efficacy of

vaccines against simple viral infections—smallpox, measles,

mumps, rubella, etc—which rely on rapid replication and fur-

ther transmission to new susceptibles. It might be that the

sexually transmitted infections prove a greater challenge with

vaccines of lower efficacy. The intuition born of experience

with earlier vaccines might lead us to reject such products, but

model results demonstrate that a low efficacy HIV vaccine

could have a substantial epidemiological impact.30–32 However,

this should be interpreted with caution. Further analysis of

the same model illustrates that a short duration of protection

could be a more serious failing (fig 1B). It is important to note

that in this model an individual with many sexual partners

maintains a high risk over a long period, increasing the

significance of the duration of protection from a vaccine. A

more detailed analysis of patterns of risk, delivery schedules,

and vaccine duration is required to fully understand the

potential of particular hypothetical HIV vaccine properties.

GOALS FOR FUTURE MODEL DEVELOPMENT
Mathematical models of sexually transmitted infections have

become more common and more sophisticated, but there is

more to be done to demonstrate their worth. Theoretically,

understanding the behaviour of infections within the dynamic

network of sexual partnerships is a great challenge, particu-

larly since the quality of data on network structures will

always be limited and biased. An improved understanding of

the pattern of infectiousness within and between infections is

another important area where data are sparse and models can

have an important role.25 In the field of interventions the

influence of epidemiological context needs to be explored in

more detail,33 but also the connection between the input into

Figure 3 A simple model describing
the shape of the HIV epidemic with
fits to sentinel HIV surveillance data.
(Left) Flow diagram illustrating the
modelled population divided into
three categories: not at risk;
susceptible; and HIV infected. Initially
a fraction f0 is at risk, but the fraction
recruited into the “at risk” class is a
function of the proportion of the
existing population at risk. This allows
the prevalence to stay high or fall
precipitously in response to HIV
associated mortality. The progress
from HIV infection to death is
assumed to be Weibull distributed.
(Top right) Antenatal clinic (ANC) HIV
prevalence data from Uganda with
the best fit of the model (solid line) to
the observed data. (Bottom right)
ANC data from Benin with best fit of
model to data.28
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interventions and the changing parameter values in math-

ematical models needs to be better described. Modelling

should be an iterative process, with a dialogue between theo-

reticians, experimentalists, field workers, and policymakers.

Models can have an important advocacy role, particularly

when they have an attractive user interface, and modelling

tools are likely to become increasingly available as user

friendly software is developed. Hand in hand with this there is

a responsibility not to mislead, which involves the education

of the end user about what can and cannot be delivered by

mathematical models and the confidence that we can place in

our theoretical understanding.
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Figure 4 Deterministic model simulations representing the impact
of STD syndromic management and mass antibiotic administration
with comparisons to their impact in the Rakai trial.29 Detailed descrip-
tion of the models and the estimation of parameters are described
elsewhere.16 17 (A) Trichomoniasis treatment; (B) gonorrhoea treat-
ment. Squares, Rakai intervention communities; triangles, Rakai con-
trol communities.
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