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An introduction to Mathematical Models 

• Framework for understanding and communicating infectious 

disease* 

• Explicit assumptions help delineate which parameters are based on 

evidence 

• Quantitative or qualitative results are compared with observed or 

experimental data 

• Validated models can be used to estimate the potential impact of 

interventions (e.g. ART for prevention) on health outcomes 

▫ HIV incidence cases 

▫ HIV associated death 

▫ HIV associated disability adjusted life years (DALYs) 

*Garnett, G. P. (2002). Sex Transm Infect 78(1): 7-12. 



Models in health economic analyses 

• Used to structure the economic question and compare all 

relevant alternatives 

• Extrapolate beyond observed data 

• Link intermediate and final endpoints 

• Generalize results to other settings/patient groups 

• Synthesize evidence to simulate comparisons where 

RCTs don’t exist 

• Indicate the need for further research 

 

HERC short course, Oxford, 2012 



Types of models 

• Static models – equilibrium (time-invariant) 

• Dynamic models – time dependent change 

▫ Force of infection can change over time 

▫ Includes herd immunity 

• Both static and dynamic models can be either 

deterministic or stochastic (constrained random 

variables) 

• Choice of model depends on scientific question  



Where do models fit in the path from 

discovery to implementation? 
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The basic and effective reproductive numbers 

R0  The Basic Reproductive Number - The number of new infections 
caused by one infection in an entirely susceptible population 
 

Rt  The Effective Reproductive Number - The number of new infections 
caused by one infection at a given time 
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Models demonstrate potential impact of interventions 



ART implementation 



Models can estimate potential impact of 

health programs 

• “HIV prevention is easy in theory – the practice 
is hard.” 

• Need intensive HIV testing and robust linkages 
to care, even among people who feel well 

• Strategies need to be effective and cost effective 



Community wide HCT & Linkage to care  in 

South Africa 

South Africa: N (%)* 

HIV testing coverage 671 (91%) 

HIV prevalence 201 (30%) 

Median CD4 count 425 cells/µL 



Results 6 months after HCT 

N (%) 

Visited an HIV Clinic 195 (97%) 

ART uptake among those 
eligible 

15 (80%) 

MC uptake in Uganda - 

Proportion with viral load 
<1,000 copies/mL among 
ART eligible participants 

Increased from 20% at 
baseline to 80% at 6 
months* 

Change in mean viral load 
over 6 months among ART 
eligible participants 

-2.46 log10 copies/mL* 

*p≤0.01 



ART Model: Structure 

 

 

 

 
• Compartmental, deterministic model for HIV - population level 

• Stratified for gender, age, sexual activity classes 

• Includes births, HIV-associated deaths & all-cause mortality  

• *Force of infection – per susceptible risk of acquiring HIV (fxn – 

sexual mixing, HIV prevalence, transmission probability)  

• Validated for KZN, South Africa 
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Roger Ying, ISSTDR, 2013 
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ART Model: Structure 

 
 
 
 
 

• Mathematical model to evaluate ART scale-up 
• Realistic assumptions for ART coverage 

▫ *32% CD4 ≤ 350 (baseline counterfactual) 
▫ *80% CD4 ≤ 350 (efficacy) 
▫ *60% CD4 ≤ 350 (effectiveness) 
▫ *80% CD4 ≤ 500 (WHO recommendations) 
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Roger Ying, ISSTDR 2013 

ART Model: Results 
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ART Coverage 
 

Costs per Infection Averted 
from 2013 to 2025 

Overall Cost 

1) 32% for CD4≤350 cell/µL $44,104 

2) 60% for CD4≤350 cell/µL $34,691 

3) 80% for CD4≤350 cell/µL $32,072 

4) 80% for CD4≤500 cell/µL $27,606 

ART Model: Cost-effectiveness 

Roger Ying, ISSTDR 2013 
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What data do we need for models? 

• Demographics 

• Mixing patterns 

• Natural history 

• Transmission probability 

• Factors that change susceptibility 

• Factors that change infectiousness 

• Effectiveness of interventions 

• Engagement in health care 
 



What study data can you use to 

parameterize models? 

• Country specific demographics 

• Distribution of CD4 count and viral load 

• Intervention (including treatment) coverage and 
efficacy – capture cascade of care 

• Factors that impact on HIV transmission: viral load, 
gender, circumcision status, co-infection status 
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How to choose the appropriate model for 

health outcomes 

No 

No 
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Adapted from Barton et al. 2004 

What model should I use? 

Is the interaction between 
patients important (e.g. 

transmission)? 

Do you need to model 
recursive events? 

Do you require your 
model to represent a lot of 

health states? 

Individual sampling 
model? 

Do you need to model 
individuals? 

Systems Dynamic Model 

Discrete Event Simulation 

Decision Tree Model 

Markov Model 

Yes 

No 



Summary 

• Infectious disease modeling is a useful tool – 

assumptions are explicit, characterize uncertainty 

• Study data can be used to parameterize models 

• Models can be used to estimate health outcomes 

• Consult with a health economist and/or modeler to 

choose an appropriate model to answer your question 

 

• Contact: rbarnaba@uw.edu  

mailto:rbarnaba@uw.edu
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