ANTIGEN CATEGORIZATION

- Marker expression usually comes in three different patterns:
- On/Off expression, usually lineage markers (CD3, CD4, CD19)
- Intermediate or continuous expression patterns (CD45RA, CD38, CD57, cytokines, many more)
- **Dimly** expressed or rare markers
 - ➤ Choose detectors that receive low spillover and pair with bright fluorochromes

Use a gating tree to assess co-expression of markers

Assess commercial availability of conjugated fluorochromes

- Fluorofinder online resource/database that shows all commercially available antibody-fluorochrome conjugates
 - >www.fluorofinder.com
 - > Also has an online panel builder and spectra viewer
- Use filter to narrow results for
 - ➤ Target species
 - ➤ Company (or you will get false positives from Biorbyt)
 - > Fluorochrome (if you want)
 - ➤ Clone (if you want)

Using Fluorfinder

Click on "Search Antibodies"

Enter antigen of interest

Narrow down results using the filters

Scroll through fluorochromes to check availability

Use the SSM and gating tree to guide antibodyfluorochrome pairings

- Assign bright markers (or highly/broadly expressed antigens) to channels that contribute little spillover
- >Assign critical or dimly expressing makers to channels that accept little spillover
- ➤ Place mutually exclusive combinations on channels with high spillover/spread values
- ➤ Use the spillover/spread matrix and gating tree to guide placement of co-expressing markers

	B515	B610	B660	B710	B780	G575	G610	G660	G710	G780
B515	0	0.668	0.638	0.763	0.319	0.237	0.236	0	0.649	0.0928
B610	0.251	0	4.66	5.11	1.41	1.35	3.71	2.08	4.76	0.659
B660	0.918	2.02	0	7.09	1.98	2.59	1.04	3.25	6.1	0.977
B710	0.848	0.677	2.73	0	4.34	2.05	0.205	1.53	10.1	3.62
B780	0.713	0.538	0.637	1.34	0	0.537	0.335	0.342	1.22	2.38
G575	0.203	4.1	2.3	2.87	0.676	0	2.1	2.01	2.95	0.55
G610	0.162	5.08	4.33	6.28	1.54	2.17	0	3.71	6.55	1.39
G660	0	0.439	4.38	6.35	2.35	1.95	0.506	0	7.69	2.06
G710	0.362	1.38	3.54	17.9	5.04	5.27	0.953	4.41	0	6.3
G780	0	0.304	0.383	0.598	6.64	0.476	0.331	0.43	0.824	0
R660	0	0.218	1.19	1.49	0.62	0.622	0.376	1.1	1.76	0.561
R710	0	0	0.465	1.74	0.844	0.511	0.14	0	2.07	0.884

Ex: CD4 and CD8 on G710 and B710 are still distinguishable as both markers are mutually exclusive

ANTIBODY TITRATION(1)

- ALWAYS TITRATE!!!!
 - > Every clone will behave differently
 - ➤ Manufacturers vial at different concentrations
- Titrate under the conditions in which the antibody will be used in the full panel
 - ➤ i.e. surface antibodies that are part of an intracellular assay must be fixed/permed

ANTIBODY TITRATION(2)

- Titrating will identify the optimal concentration at which to use the antibody
 - ➤ It will (almost always) save reagent (money)

ANTIBODY TITRATION(3)

- Spreading error can be reduced if a saturating concentration is not needed (lineage markers)
 - ➤ Spreading is proportional to signal intensity

STAINING CONTROLS

- Necessary to identify cells which do or do not express a given antigen
- Threshold for positivity may depend on the amount of fluorescence in other channels
- Unstained cells or isotype controls stains are improper controls

FMO CONTROLS

- FMO = Fluorescence
 Minus One
 - Cells are stained with all reagents EXCEPT the one of interest
- Essential for complex panels
- Reveal unnoticed or unexpected issues with spreading
- Should be used for setting correct gates

PBMC stained as shown. Compensation properly set.

FMO EXAMPLE - MISSING PE-TR

FMO Example – Missing PE-Cy5

 CD28 PE-Cy5 was not added to the staining cocktail but there appears to be a positive signal

 Staining artefact comes from large spreading of Qdot reagent

A bright Qdot

Panel assessment using multigraph overlays

- Overlay different populations to see where subsets exist
- Identify potential spreading issues

SUMMARY

Compensation

- > Compensation values are arbitrary
- > All panels (but especially large) require appropriate compensation controls
- > Analyze properly transformed (and compensated) data
- > Properly compensated data reveals errors, it does not cause them

Spillover/Spreading

- > Spillover/spreading error is the single most important contributor to background and loss of resolution
- > Spreading error is instruments specific
- > Spreading error is proportional to signal intensity

Panel Development

- > A standardized, optimized instrument is key to successful panel development
- > Use the SSM matrix and antigen co-expression to guide marker placement
- > Titrate antibodies
- > Use appropriate controls and QC checks when assessing a new panel
- > The process is iterative and sometimes frustrating

ACKNOWLEDGMENTS

Mario Roderer, NIH Stephen Perfetto, NIH Florian Mair, FH Stephen De Rosa, FH Julie McElrath, FH Questions: kschwedh@fredhutch.org

