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Objectives 

• Get an intuitive sense of epidemic modeling 

• Basic overview of modeling types & structures of models 

• Two examples 

– Compartmental model: HIV serosorting among MSM in Seattle 

– Stochastic network model: Importance of concurrency & acute 

stage of HIV among heterosexual young adults in Zimbabwe 

– What we do, what it takes to build each of these 

• Future directions 
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Uses of mathematical models 

• Predict population-level disease outcomes from  

– individual-level behavior  

– HIV prevention interventions 

 

• Virtual “laboratory”  

– Identifying important components of transmission system 

– Test possible outcomes from interventions: alone or in 

combination 

– Explore behavioral determinants of disparities 

 

… while being cheaper, less complicated, and avoiding ethical 

dilemmas 
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Prevalence of emerging disease 

 

2006 0.0% 

2007 0.5% 

2008 1.2% 

2009 2.6% 

2010 4.1% 

2011 5.6% 

2012 5.4% 

2013 4.1% 

2014 3.9% 

2015 4.0% 

2016 3.9% 

2017 4.1% 

Intervention 1 

Intervention 2 

Intervention 3 

Why? 
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Because non-linear dynamics are completely non-intuitive! 

 

Early on provided lots of insight into basic infectious  disease dynamics in 

general 

 

 

 

 

 

 

 

 

Continues to answer questions about the predicted effects of behavioral 

interventions, vaccines, etc. 

Why? 

5 July 2012 



July 2012 

Maps 
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How models are like maps  

Like maps, models… 

 … are abstractions 

 … have scale  

 … must trade off realism with generality 

The kind of model you use depends on the question 

you want to answer. 
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Modeling can be simple or complex 

i(t) = i(0) + tc      the number of infecteds at time t is a simple  

                            function of time and the linear growth rate 

 

8 



R0 = the number of direct infections occurring as a result of a single infection in 

a “virgin” population – that is, one that has not experienced the disease before 

 

Called the basic reproductive ratio 

 

Tells one whether an epidemic is likely to occur or not: 

 

• If R0 > 1, then a single infected individual in the population will on average 

infect more than one person before ceasing to be infected. In a deterministic 

model, the disease will grow 

 

• If R0 < 1, then a single infected individual in the population will on average 

infect less than one person before ceasing to be infected. In a deterministic 

model, the disease will fade away 

 

• If R0 = 1, we are right on the threshhold between an epidemic and not. In a 

deterministic model, the disease will putter along 

Epidemic potential 
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R0 = βcd  

Epidemic potential 

How many people will a single new infected person infect before they cease to be infected? 

 

Imagine that a newly infected person is infected for d time units on average.

   

During each of these time units, how many contacts will they have?   

 

What is their total # of contacts while they’re infected?     

 

What proportion of them will be susceptible?    

 

So, what is their total # of susceptible contacts while they’re infected?  

 

For each contact, what is the probability of transmission?  

 

So, what is the expected number of people a single infected  

 person will infect?     

c 

 

cd 

 

100% 

 

cd 

 

β 

 

 

βcd 
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Example: R0 = 4 
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Epidemic modeling 

• Infectious disease transmission operates within a classic complex 

system 

 

• They exhibit feedback (how many get infected depends on how 

many are already infected, but in complicated ways) 

 

• STDs in particular are transmitted on highly structured, non-random 

networks of contacts 
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More on sexual contacts 

• Contacts are usually within a partnership (i.e. multiple contacts 

with same person) 

 

• The timing and sequence of partnerships matter 

 

• Who mixes/partners with whom matters (i.e. people don’t choose 

partners randomly) 
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Daily connectivity: mixing and concurrency 

Almost all 

components 

are size 2 or 

smaller 

 

The largest 

components 

have 5-6 

nodes  

 

0.06% 
 

connected 
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So, what to do? 

How do we incorporate these important issues into modeling?   

 

The answer depends on: 

– the population to be modeled 

– data availability 

– the scientific question at hand, and 

– the modeler’s preferences 

 

Let’s talk about two options: 

1.Deterministic, compartmental modeling 

2.Stochastic, agent-based and network modeling 
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Models often classified by rates 

• Underlying process of a model: deterministic or stochastic 

 

• Difference is how they define the movement between states 

– Deterministic models: average rate of transition between states, 
or using the mean to predict rates of movement 

– Stochastic models: define the dynamics using the probability 
that an individual makes the transition from one state to another, 
or using the full probability distribution of outcomes to govern 
rates 

 

• Often has implications for states (careful!):  

– Deterministic models: usually built on group aggregates or 
macro-level states (i.e. compartments),  

– Stochastic simulation models: usually built to reflect the micro-
level states occupied by discrete individual persons.  
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Deterministic vs. stochastic 
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Models can also be classified by 

solutions 

• Dynamics over time can be solved analytically or 

computationally 

– Analytic, or “closed form” solutions isolate outcome on left-hand 

side of equation  

– Computational, or numerical, solutions need to be used if the 

outcome is on both sides of the equation – ex: non-trivial 

feedback loops 

• This happens very quickly; most models with realistic 

heterogeneity need to be solved this way 
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Model classification 

…in a simplified scheme… 

Deterministic 

Analytic 

Deterministic  

Computational 

Stochastic 

Analytic 

Stochastic  

Computational 

complexity 
c
o

m
p

le
x
ity

?
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Compartmental modeling 

“Classic epidemic modeling”: is based on differential equations that 

divide people into epidemiologically relevant “compartments” and 

then specify the magnitude of change on those compartment sizes at 

any given time 

 

 

Baggeley & Fraser,  

Current Opinion in HIV/AIDS, 2010 July 2012 20 



•  People can move between compartments along “transitions,” aka 

“flows”.  

•  Transitions represent different phenomena depending on the 

compartments that they connect 

•  Transitions can also occur between a compartment and from 

somewhere outside of the model 

•  Transitions are typically a function of the size of compartments 

 

Susceptible Infected 

Compartmental Modeling 
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1.  Define compartments and flows 

Compartmental models: Step 1 
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1.  Define compartments and flows 

Susceptibles 

S(t) 

Infecteds 

I(t) 

Recovereds 

R(t) 

Compartmental models: Step 1 
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Susceptibles 

S(t) 

Infecteds 

I(t) 

Recovereds 

R(t) 

1.  Define compartments and flows 

Compartmental models: Step 1 
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Compartmental models: Step 1 

One can add additional heterogeneity (behavioral, genetic, 

virological, etc.) among actors in a compartmental model 

by defining more compartments 

 

(e.g. undiagnosed / diagnosed / treated) 

 

This works best when the heterogeneity comes in the form 

of a limited number of discrete categories. 
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2.  Determine the initial size of each compartment 

Susceptibles 

S(t) 

Infecteds 

I(t) 

Recovereds 

R(t) 

very different outcomes from initial sizes of: 

S(0) = 1000 / I(0) = 0 / R(0) = 500, vs. 

S(0) = 1000 / I(0) = 25 / R(0) = 25 

 

Compartmental models: Step 2 
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3.  Determine the rates for the flows 

Number of births per unit time: often modeled as a  = b 

constant rate. 

 

Number of recoveries per unit time:  often modeled        = k * I 

as a constant rate times the size of the compartment 

 

Number of deaths per unit time:  often modeled        = μS or μI or μR 

as a constant rate times the size of the compartment 

Susceptibles 

S(t) 

Infecteds 

I(t) 

Recovereds 

R(t) 

Compartmental models: Step 3 
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Number of transmissions per unit time: the interesting bit! 

 

3.  Determine the rates for the flows 

Susceptibles 

S(t) 

Infecteds 

I(t) 

Recovereds 

R(t) 

Compartmental models: Step 3 
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# of transmissions / unit time =  

(# of susceptibles) *  

(# of contacts / susceptible / unit time) * 

(prob. each contact is with an infected person) *  

(prob. of transmission given an SI contact) 

 

Transmission involves: Infected person 

 Susceptible person 

 Contact between them 

 Transmission given contact 

…so, one way to model transmissions is… 

Compartmental models: Step 3 
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(# of susceptibles) *  

(# of contacts / susceptible / unit time) *  

(prob. each contact is with an infected person)* 

(prob. of transmission given an SI contact) 

# of transmissions at time t = 
)(tn

I(t)
cS(t)

Susceptibles 

S(t) 

Infecteds 

I(t) 

Recovereds 

R(t) 

where n(t) = S(t) + I(t) + R(t) 

Compartmental models: Step 3 
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How do you know what values to assign to these 

various quantities (c, β, etc.)?    

1. Use data from epidemiological studies. 

2. If good data don’t exist, try a variety of realistic values, and if you’re 

lucky, the results won’t be very sensitive to this uncertainty. 

3. If they are sensitive, then you’ve just identified a place where more 

data may be needed to adequately answer whatever important 

question it is you’re addressing with your model. 

 

Compartmental models: Step 3 
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 
)(

)(
tn

I(t)
cS(t)tSb

dt

dS

Change in the # of susceptibles at time t =  # of births – # of deaths to 

susceptibles – # of infections 

)()(
)(

tkItI
tn

I(t)
cS(t)

dt

dI
 

Change in the # of infecteds at time t = # of infections – # of deaths to 

infecteds – # of recoveries  

Change in the # of immunes at time t =  # of recoveries - # of deaths to 

immunes 

)()( tRtkI
dt

dR


Compartmental models: Step 4 
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Incidence 

 
)(

)(
tn

I(t)
cS(t)tSb

dt

dS

Change in the # of susceptibles at time t =  # of births – # of deaths to 

susceptibles – # of infections 

)()(
)(

tkItI
tn

I(t)
cS(t)

dt

dI
 

Change in the # of infecteds at time t = # of infections – # of deaths to 

infecteds – # of recoveries  

Change in the # of immunes at time t =  # of recoveries - # of deaths to 

immunes 

)()( tRtkI
dt

dR


Compartmental models: Step 5 
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Incidence 

 
)(

)(
tn

I(t)
cS(t)tSb

dt

dS

Change in the # of susceptibles at time t =  # of births – # of deaths to 

susceptibles – # of infections 

)()(
)(

tkItI
tn

I(t)
cS(t)

dt

dI
 

Change in the # of infecteds at time t = # of infections – # of deaths to 

infecteds – # of recoveries  

Change in the # of immunes at time t =  # of recoveries - # of deaths to 

immunes 

)()( tRtkI
dt

dR


( )

S(t)

n t
Prevalence 

Compartmental models: Step 5 
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Number of new cases at a given time 

Number of people infected at any given time 

Number of people not infected at any given time… 

 

And therefore, prevalence at any given time 

 

(As well as most other epidemiological 

 measures you can think of) 

from... 

…to... 

Compartmental models: Step 5 
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Compartmental modeling: strengths 

•  General framework well understood (and studied for many decades 

now) 

•  Relatively easy to implement using existing software  

• Because it has been the standard for decades, it is what most 

modelers are most familiar with 

•  It is thus relatively easy to communicate to others (other 

investigators, reviewers, grantees, etc.) 
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Research aims 

1. To evaluate the population and individual-level effects of HIV 
serosorting among MSM in Seattle 

 

2. To define factors that might influence how serosorting affects HIV 
transmission dynamics 

 

*Punchline: serosorting is protective in the context of MSM in Seattle, 
but might not be elsewhere. Testing is key. 

 

Thus recognition of serosorting’s importance should prompt more 
frequent HIV testing and more sensitive assays 
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Compartments (x2) 
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Key social/behavioral assumptions 

• Men choose partners based on serostatus 

• Men proportionally choose partners based on “sexual activity class” 

 

Transmission is a function: 

– diagnosed or undiagnosed positive 

– high/low sexual activity class 

– stage of HIV disease 

– # contacts within partnership 

– sexual position 

– condom use 
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Results: baseline 
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**URAI/UIAI: Unprotected receptive/insertive anal intercourse 

Probability of transmission during 

unprotected anal sex with a randomly 

chosen apparent negative. 
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Results: testing 

Equilibrium HIV prevalence by testing frequency.  
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Summary 

1. HIV prevalence among MSM in Seattle would be 
higher if men did not serosort. 

2. Serosorting may be detrimental if men do not test 
often. 

thus recognition of serosorting’s importance should prompt 
more frequent HIV testing and more sensitive assays. 
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Compartmental models: limitations 

 At least four important limitations. 

1. Because the approach is usually implemented deterministically, it is 

hard to get a sense of the possible range of outcomes for a 

scenario. 

2. Does not easily handle continuous variation, or variation that 

comes in a form with many possible values. 

3. Some phenomenon of key interest are (next to) impossible to 

represent in the compartmental modeling framework 

4. Model complexity grows exponentially with phenomenon 

complexity 
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The elephant in the room 

• Compartmental models have worked to simulate reasonable 

epidemics among MSM in the U.S. 

 

• Many published compartmental models for heterosexual epidemics 

in sub-Saharan Africa posit absurdly high rates of partner 

accumulation 

– E.g. One widely cited study has to assume that the average male 

and female in the population of Yaounde´, Cameroon has 221 

lifetime partners, and 7%have an average of 2,870 partners, 

each relationship at least 1 week long, over 35 sexually-active 

years (Abu Raddad, AIDS 2008).  

 

• Why? Concurrency might be more important for sustaining ongoing 

transmission in heterosexual epidemics. 
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Agent-based model = a model representing each member of the 

population explicitly, typically in some sort of large matrix of 

individuals and their attributes 

Network model = a model representing individual contacts 

explicitly (whether they be persistent relationships or one-time 

contacts) 

Stochastic model = a model in which multiple runs of the same 

scenario can produce different results 

Agent-based models 

 

 

 

 

 
Network models 

Stochastic agent-based & network 

modeling 
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Forms of heterogeneity 

Model  

complexity 

Compartmental modeling Agent-based/network 

modeling 

Effort required… 
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Agent-based models: benefits 

• These models can incorporate much more individual heterogeneity 

• E.g.: Goodreau et al. (PAA 2011): HIV among MSM 

July 2012 

Age Race/ethnicity Circumcision 

status 

Treatment status 

PrEP status Viral load Sexual role 

preference 

Diagnosis status 

Time since 

infection 

Time since last 

negative test 

Enrolment in 

interventions 

Etc. etc. 
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1. Represent each member of the initial population explicitly, 

typically in some sort of matrix or data frame of individuals and 

their attributes 

• Major positive: data storage and 

method complexity increases 

only linearly with number of 

attributes 

• Minor negative: it also increases 

linearly with population size 

Network modeling: Step by Step 
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2. Develop a model for relational structure, derived from data 

• What predicts which individuals will or will not form a 

relationship? (e.g. sex, race, disease status, age, etc., etc.) 

• What structural features tend to be present in the relational 

network beyond simply attribute mixing? (E.g. particular degree 

distributions, triangles, etc.) 

• How long do relationships last, and what sources of 

heterogeniety are there? 

3. Estimate that model using a statistical framework built for 

estimation and simulation of dynamic social networks 

• We use exponential random graph modeling, although other 

frameworks exist. 

Network modeling: Step by Step 
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5. Develop modules for the various phenomena that the 

population experiences moving forwards in time 

Update demographics (arrivals, deaths, departures, aging) 

Update other attributes (viral load, testing, circumcision, 
etc.) 

Evolve relational network forward one time step 

Decide which relationships involve UAI (and roles) 

Determine transmissions as fx of viral load, circumcision, role 

Engage in ridiculous amounts of bookkeeping 

EA
C

H
 T

IM
E 

ST
EP

 

Network modeling: Step by Step 
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4. Build the initial network for the initial population. 

51 



Update other attributes (viral load, testing, circumcision, etc.) 

July 2012 52 
Slides courtesy of Steven Goodreau 



HIV & Concurrency in Zimbabwe 

July 2012 

Our aim: Develop a generalized modeling approach for sexual 

networks and HIV spread that incorporates sexual network 

characteristics, and apply it to questions of acute infection 
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Key social/behavioral components 

• Explicitly model sexual network, including: 

– rates of concurrency for men and women 

– partnership type (marriage/live-in vs. casual) 

– durations of partnerships 

 

This paper was one of the first to do so (thanks to the University of 

Washington statnet team) 
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Methods: Exponential random graph 

modeling (ERGM) 
www.statnetproject.org 

July 2012 55 



Results: Proportion of infections by 

stage 
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Cumulative proportion of infection events,  

by time since infection of index partner 
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Alternative models: 

1.  Male reports instead of mid-point 

Males reported an average of 0.08 more partnerships than females 

did; a small difference, but one which must be dealt with. Rather 

than assuming the midpoint is correct, here we assume male 

reports are correct. 

 

2. No concurrent relationships (same # of relationships; same mean 

duration; but forced to be sequential) 

How much does concurrency drive the epidemic here?  What would 

be the effect of changes in concurrency? 
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Male reports instead of mid-point 
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 No concurrent relations 

  

  

Epidemic dies out every 

time…. 
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Final thoughts 

• Important for non-modelers to understand assumptions behind 

models (a look under the hood), and do not necessarily accept 

conclusions on blind faith 
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Final thoughts 

• Effectiveness of interventions: account for 

– Coverage 

– Impact 

– Duration 

– Trade-offs 

 

• Connections between modelers and behavioral scientists 

– Realism of social and behavioral assumptions: not a “throw 

away” parameter 

– Collaboration from the beginning 
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Final thoughts 

• Long-term outcomes, sustainability? 

• Unexpected consequences 

• Unintuitive population-level impact – not a direct scale-up of 

individual actions 
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