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Objectives

Get an intuitive sense of epidemic modeling
Basic overview of modeling types & structures of models
Two examples
— Compartmental model: HIV serosorting among MSM in Seattle

— Stochastic network model: Importance of concurrency & acute
stage of HIV among heterosexual young adults in Zimbabwe

— What we do, what it takes to build each of these
Future directions
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Uses of mathematical models

« Predict population-level disease outcomes from
— individual-level behavior
— HIV prevention interventions

* Virtual “laboratory”
— ldentifying important components of transmission system

— Test possible outcomes from interventions: alone or in
combination

— Explore behavioral determinants of disparities

... While being cheaper, less complicated, and avoiding ethical
dilemmas

July 2012



Why?

Prevalence of emerging disease

2006 0.0%
2007 0.5%
2008 1.2% -« Intervention 1
2009 2.6%
2010 4.1%
2011 5.6% < Intervention 2
2012 5.4%
2013 4.1%
2014 3.9% - Intervention 3
2015 4.0%
2016 3.9%

2017 4.1%
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Why?

Because non-linear dynamics are completely non-intuitive!

Early on provided lots of insight into basic infectious disease dynamics in
general
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Continues to answer guestions about the predicted effects of behavioral
Interventions, vaccines, etc.
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How models are like maps

Like maps, models...
... are abstractions
... have scale

... must trade off realism with generality

The kind of model you use depends on the question
you want to answer.
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Modeling can be simple or complex

I(t) =1(0) +tc  the number of infecteds at time t is a simple
function of time and the linear growth rate

\FTins | fUrec 414 AAAT TTL Y vy Uvn Laev g

Assembling introductions, infections, and removals thus yields the following differential equations:
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The model is then solved for different values of 7 (0) (initial prevalence of versatility), 4 (role assortativity), and ¢ (contact rate),
as discussed in the text (Subjects and Methods).
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Epidemic potential

R, = the number of direct infections occurring as a result of a single infection in
a “virgin” population — that is, one that has not experienced the disease before

Called the basic reproductive ratio

Tells one whether an epidemic is likely to occur or not:

* If R, > 1, then a single infected individual in the population will on average
infect more than one person before ceasing to be infected. In a deterministic
model, the disease will grow

* If Ry < 1, then a single infected individual in the population will on average
infect less than one person before ceasing to be infected. In a deterministic

model, the disease will fade away

* If R, = 1, we are right on the threshhold between an epidemic and not. In a
deterministic model, the disease will putter along

July 2012



Epidemic potential

How many people will a single new infected person infect before they cease to be infected?

Imagine that a newly infected person is infected for d time units on average.

During each of these time units, how many contacts will they have? C
What is their total # of contacts while they’re infected? cd
What proportion of them will be susceptible? 100%
So, what is their total # of susceptible contacts while they’re infected? cd
For each contact, what is the probability of transmission? B

So, what is the expected number of people a single infected
person will infect? Bcd

July 2012
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Example: R, =4
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Epidemic modeling

« Infectious disease transmission operates within a classic complex
system

« They exhibit feedback (how many get infected depends on how
many are already infected, but in complicated ways)

« STDs in particular are transmitted on highly structured, non-random
networks of contacts

July 2012 12



More on sexual contacts

« Contacts are usually within a partnership (i.e. multiple contacts
with same person)

« The timing and sequence of partnerships matter

 Who mixes/partners with whom matters (i.e. people don’t choose
partners randomly)

July 2012
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Daily connectivity: mixing and concurrency

Almost all
components
are size 2 or

smaller

0.06%

connected

The largest
components
have 5-6
nodes

July 2012 Morris et al. AJPH 2009 14



So, what to do?

How do we incorporate these important issues into modeling?

The answer depends on:
— the population to be modeled
— data availability
— the scientific question at hand, and
— the modeler’s preferences

Let’s talk about two options:

1.Deterministic, compartmental modeling
2.Stochastic, agent-based and network modeling

July 2012
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Models often classified by rates

« Underlying process of a model: deterministic or stochastic

« Difference is how they define the movement between states

— Deterministic models: average rate of transition between states,
or using the mean to predict rates of movement

— Stochastic models: define the dynamics using the probability
that an individual makes the transition from one state to another,
or using the full probability distribution of outcomes to govern
rates

« Often has implications for states (careful!):

— Deterministic models: usually built on group aggregates or
macro-level states (i.e. compartments),

— Stochastic simulation models: usually built to reflect the micro-

level states occupied by discrete individual persons.
July 2012 16



Deterministic vs. stochastic
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Deterministic madel

25
ol
55 20
= 3
m;.-
£ % 15
22
E 2 10
=5
=
ag 5
L}.. A
0 5 10

Stochastic model

15 a0 0 5 10 15 20
Day

Fig. 2.4 Comparison between predictions of the number of infectious persans per day for
nfluenza obtained using a deterministic model and a stochastic model using 20 “runs’,
with the rate at which individuals are infected being allowed to vary with each run.
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Models can also be classified by
solutions

« Dynamics over time can be solved analytically or
computationally

— Analytic, or “closed form” solutions isolate outcome on left-hand
side of equation

— Computational, or numerical, solutions need to be used if the
outcome is on both sides of the equation — ex: non-trivial
feedback loops

« This happens very quickly; most models with realistic
heterogeneity need to be solved this way

July 2012 18



Model classification

...In a simplified scheme...

July 2012

complexity
Deterministic Deterministic
Analytic Computational
Stochastic Stochastic
Analytic Computational
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Compartmental modeling

“Classic epidemic modeling”: is based on differential equations that
divide people into epidemiologically relevant “compartments” and
then specify the magnitude of change on those compartment sizes at
any given time Flaur 3 Schmatc ustaonsof thesructrs of IV s ision modelsincrporaing antrirovalhrepy

> > b SEEES BT - -
Baggeley & Fraser,
July 2012 Current Oplnlon |n HIV/AIDS, 2010 tre:t)nf-’fent l tregient m tregﬁent trea?jen‘r m tre:t}: nt m
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Compartmental Modeling

People can move between compartments along “transitions,” aka
“flows”.

Transitions represent different phenomena depending on the
compartments that they connect

Transitions can also occur between a compartment and from
somewhere outside of the model

Transitions are typically a function of the size of compartments

) Susceptible — Infected —

July 2012 21



Compartmental models: Step 1

1. Define compartments and flows

July 2012
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Compartmental models: Step 1

July 2012

1. Define compartments and flows

Susceptibles
S(t)

Infecteds

I(t)

Recovereds
R(t)

23



Compartmental models: Step 1

1. Define compartments and flows

Susceptibles Infecteds Recovereds

S(t) 1(t) R(t)

~ ~ ~

July 2012



Compartmental models: Step 1

One can add additional heterogeneity (behavioral, genetic,
virological, etc.) among actors in a compartmental model
by defining more compartments

(e.g. undiagnosed / diagnosed / treated)

This works best when the heterogeneity comes in the form
of a limited number of discrete categories.

July 2012 25



Compartmental models: Step 2

2. Determine the initial size of each compartment

Susceptibles Infecteds Recovereds

S(t) I(t) R(t)

N N N

very different outcomes from initial sizes of:
S(0) =1000/1(0) =0/R(0) =500, vs.
S(0) =1000/1(0) =25/R(0) =25

July 2012



Compartmental models: Step 3

3. Determine the rates for the flows

Susceptibles Infecteds Recovereds
— S(t) — I(t) ' R(t)

N N N

Number of births per unit time: often modeled as a =
constant rate.

Number of recoveries per unit time: often modeled =k *|
as a constant rate times the size of the compartment

Number of deaths per unit time: often modeled = uS or yl or uR
as a constant rate times the size of the compartment

July 2012 27



Compartmental models: Step 3

3. Determine the rates for the flows

Susceptibles Infecteds Recovereds
S(t) | I(t) | R(t)

N N N

Number of transmissions per unit time: the interesting bit!

July 2012



Compartmental models: Step 3

Transmission involves: Infected person
Susceptible person
Contact between them
Transmission given contact

...S0, one way to model transmissions is...

# of transmissions / unit time =
(# of susceptibles) *
(# of contacts / susceptible / unit time) *
(prob. each contact is with an infected person) *

(prob. of transmission given an Sl contact)

July 2012
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Compartmental models: Step 3

Susceptibles
S(t) |

Infecteds

I(t)

N

N

(# of susceptibles) *

(# of contacts / susceptible / unit time) *

(prob. each contact is with an infected person)*

(prob. of transmission given an S| contact)

Recovereds

7 R(t)

N

July 2012

\4 v v l

I(t
# of transmissions at timet = S(t)-c- ()

n(t)

where n(t) = S(t) + I(t) + R(t)

30



Compartmental models: Step 3

How do you know what values to assign to these
various guantities (c, B, etc.)?

1. Use data from epidemiological studies.

2. If good data don’t exist, try a variety of realistic values, and if you're
lucky, the results won'’t be very sensitive to this uncertainty.

3. If they are sensitive, then you've just identified a place where more
data may be needed to adequately answer whatever important
guestion it is you're addressing with your model.

July 2012 31



Compartmental models: Step 4

Change in the # of susceptibles at time t = # of births — # of deaths to
susceptibles — # of infections

ds )
— =b- S
it H5 (1) =S(h)-C "y

Change in the # of infecteds at time t = # of infections — # of deaths to
infecteds — # of recoveries

Al o MO 5
=50 0 2l () —KI (1)

Change in the # of immunes at time t = # of recoveries - # of deaths to
iImmunes

dR
E=k|(t)—/lR(t)

July 2012 32



Compartmental models: Step 5

Change in the # of susceptibles at time t = # of births —# of deaths to
susceptibles — # of infections
—

dsS

E:b—yS(t)

Incidence

Change in the # of infecteds at time t = # of infections — # of deaths to
infecteds — # of recoveries

dl 1(t)

— =S(t)-c-—=- B— () —KI(t

it (t) () pl (t) —KI(t)

Change in the # of immunes at time t = # of recoveries - # of deaths to
iImmunes
drR
—— =KkI(t) - £R(t)
July 2012 dt 33



Compartmental models: Step 5

Change in the # of susceptibles at time t = # of births — # of deaths to
susceptibles — # of infections

ds O

— =b—5(t) S@)

Prevalence —»

dt n(t)

Incidence

Change in the # of infecteds at time t = # of infections — # of deaths to
infecteds — # of recoveries

dl 1(t)

— =S(t)-c-—=- B— () —KI(t

it (t) () pl (t) —KI(t)

Change in the # of immunes at time t = # of recoveries - # of deaths to
iImmunes
drR
—— =KkI(t) - £R(t)
July 2012 dt 34



Compartmental models: Step 5

from...

...to...

July 2012
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Number of new cases at a given time
Number of people infected at any given time

Number of people not infected at any given time...

And therefore, prevalence at any given time

(As well as most other epidemiological
measures you can think of)
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Compartmental modeling: strengths

General framework well understood (and studied for many decades
now)

« Relatively easy to implement using existing software

« Because it has been the standard for decades, it is what most
modelers are most familiar with

« Itis thus relatively easy to communicate to others (other
Investigators, reviewers, grantees, etc.)

July 2012 36



A Tale of Two Futures: HIV and

Antiretroviral Therapy in San

Francisco

S. M. Blower,"® H. B. Gershengorn,’ R. M. Grant?
urban Haiti

1l 141 el

Declines in HIV prevo|ence can be associated with changing
sexual behaviour in Uganda, urban Kenya, Zimbabwe, and

T B Hallett, J Aberle-Grasse, G Bello, L-M Boulos, M P A Cayemittes, B Cheluget, J Chipeta,
R Dorrlnglon S Dube A K Ekra, J M Garcia-Calleja, G P Garnett, S Greby, S Gregson, J T Grove,
*smail, $ Kassim, W Kirungi, L Kouassi, A Mahomva, L Marum,

No HIV stage is dominant in driving the HIV epidemic
in sub-Saharan Africa

Laith J. Abu-Raddad®™ € and Ira M. Longini Jpbed

over, N Walker

Sex Transm Infect 2006;82(Suppl 1):i1-i8. doi: 10.1136/i.2005.016014

Matthew R. Golden®

sexual behavior, and condom use.

July 2012

HIV serosorting as a harm reduction strategy:
evidence from Seattle, Washington

Susan Cassels®, Timothy W. Menza®, Steven M. Goodreau® and

Objective: We sought to estimate how serosorting may affect HIV prevalence and
individual risk among men who have sex with men in Seattle, Washington, and how the
results vary under different assumptions of HIV testing frequency, heterogeneity in

Methods: We developed a deterministic mathematical model of HIV transmission
dynamics. Data from the 2003 random digit dial study of men who have sex with men
conducted in Seattle, Washington (n=400) are used to parameterize the model.

37



Research aims

1. To evaluate the population and individual-level effects of HIV
serosorting among MSM in Seattle

2. To define factors that might influence how serosorting affects HIV
transmission dynamics

*Punchline: serosorting is protective in the context of MSM in Seattle,
but might not be elsewhere. Testing is key.

Thus recognition of serosorting’s importance should prompt more
frequent HIV testing and more sensitive assays

July 2012 38



Compartments (x2)

X: Susceptible  {U, E, Y}: Early/Acute stage Z: Chronic A: AIDS
(U: NAAT-/EIA-, E: NAAT-/EIA+, Y: NAAT+/EIA+)

v
—>

BL,H

) } untested,
untreated

TLH l

diagnosed, treated 1 1 1,0 1,0
Sactivitylevel EL,H i, YL,H * > ZL,H L, H _a, }tested,

untreated

True

Apparent| | negatives
negative, Mo 0] Fiw @
AN
True

: o 11 | @a-&)y 11 | @&
%gg?i?’zzd positives Z LH H|— tested,
(OP) treated

Figure 1. Model structure: compartments and flows. There are 12 compartments for
each activity class, Low (L) and High (H).
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Key social/behavioral assumptions

 Men choose partners based on serostatus
« Men proportionally choose partners based on “sexual activity class”

Transmission is a function:
— diagnosed or undiagnosed positive
— high/low sexual activity class
— stage of HIV disease
— # contacts within partnership
— sexual position
— condom use

July 2012 40



Results: baseline

Population-level risk Individual-level risk

30 c 0.0007
Q o
o @ 0.0006
S 25 2
E S 0.0005
o 20 &
s S 0.0004
= 5
T 15 1 > 0.0003
E = 0.0002
=} ol .
= 10 A1 o]
= 2 0.0001 -
C_5 ful
S s T _ 1
3 0 ,
w URAI UIAI

O .
serosorting no serosorting B serosorting O no serosorting

Probability of transmission during
unprotected anal sex with a randomly
chosen apparent negative.

July 2012 41
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Results: testing

July 2012

Equilibrium Prevalence

0.35

Equilibrium HIV prevalence by testing frequency.

B Serosorting @ No serosorting

0.30 -

0.25 -

0.20

0.15 -

0.32

o o ©
o o Pk
S o o

0.2;,0.4

0.30

0.25;0.5 0.33; 0.66 0.5;1.0 1.0;2.0
EIA Tests/Year (Low-Activity; High-Activity)
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Summary

1. HIV prevalence among MSM in Seattle would be
higher if men did not serosort.

2. Serosorting may be detrimental if men do not test
often.

thus recognition of serosorting’s importance should prompt
more frequent HIV testing and more sensitive assays.

July 2012 43



Compartmental models: limitations

At least four important limitations.

1. Because the approach is usually implemented deterministically, it is
hard to get a sense of the possible range of outcomes for a
scenario.

2. Does not easily handle continuous variation, or variation that
comes in a form with many possible values.

3. Some phenomenon of key interest are (next to) impossible to
represent in the compartmental modeling framework

4. Model complexity grows exponentially with phenomenon
complexity

July 2012 44



The elephant in the room

« Compartmental models have worked to simulate reasonable
epidemics among MSM in the U.S.

« Many published compartmental models for heterosexual epidemics
In sub-Saharan Africa posit absurdly high rates of partner
accumulation

— E.g. One widely cited study has to assume that the average male
and female in the population of Yaounde”, Cameroon has 221
lifetime partners, and 7%have an average of 2,870 partners,
each relationship at least 1 week long, over 35 sexually-active
years (Abu Raddad, AIDS 2008).

 Why? Concurrency might be more important for sustaining ongoing

transmission in heterosexual epidemics.
July 2012 45



Stochastic agent-based & network

modeling

Agent-based model = a model representing each member of the
population explicitly, typically in some sort of large matrix of
individuals and their attributes

Network model = a model representing individual contacts
explicitly (whether they be persistent relationships or one-time
contacts)

Stochastic model = a model in which multiple runs of the same
scenario can produce different results

Agent-based models

Network models

July 2012 46




Effort required...

Model
complexity

July 2012

Compartmental modeling Agent-based/network
modeling
tion . entions
e interver nation inter?

Forms of heterogeneity
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Agent-based models: benefits

 These models can incorporate much more individual heterogeneity
 E.g.: Goodreau et al. (PAA 2011): HIV among MSM

Age

PrEP status

Time since
infection

July 2012

Race/ethnicity

Viral load

Time since last
negative test

Circumcision
status

Sexual role
preference

Enrolment in
interventions

Treatment status

Diagnosis status

Etc. etc.

48



Network modeling: Step by Step

July 201

1. Represent each member of the initial population explicitly,
typically in some sort of matrix or data frame of individuals and
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their attributes

« Major positive: data storage and
method complexity increases
only linearly with number of
attributes

« Minor negative: it also increases
linearly with population size
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Network modeling: Step by Step

2. Develop a model for relational structure, derived from data

« What predicts which individuals will or will not form a
relationship? (e.g. sex, race, disease status, age, etc., etc.)

« What structural features tend to be present in the relational
network beyond simply attribute mixing? (E.g. particular degree
distributions, triangles, etc.)

« How long do relationships last, and what sources of
heterogeniety are there?

3. Estimate that model using a statistical framework built for
estimation and simulation of dynamic social networks

» We use exponential random graph modeling, although other
frameworks exist.

July 2012
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Network modeling: Step by Step

4. Build the initial network for the initial population.

5. Develop modules for the various phenomena that the
population experiences moving forwards in time

(‘

EACH TIME STEP
A

\-

July 2012

Update demographics (arrivals, deaths, departures, aging)

Update other attributes (viral load, testing, circumcision,

aka )

Evolve relational network forward one time step

Decide which relationships involve UAI (and roles)

Determine transmissions as fx of viral load, circumcision, role

Engage in ridiculous amounts of bookkeeping

51



Update other attributes (viral load, testing, circumcision, etc.)

msm.update.attributes =- function{pop,curr.time,

testcutoff=testcutoff,
circum.healingtime=circum.healingtime,
active.v,
treatment.starttime.by.race
) A

# Intro

newpop <- pop

activenodes =- active.v

uncirc <- which(pop %v% "circum.status" == 0)

neg.or.undiag =- union(which{pop %v% "diag.status" == 0),which(pop %v% "inf.status" == 0))
notonprep =- which(pop %v% "prep.status" == 0]

onprep <= which(pop %v% "prep.status" == 1)

# Non-intervention circumcision (presumably zero but worth including)

nointerv <- which{pop %v% "circum.interv.status" == 0)

active.uncirc.nointerv =- intersect3({activenodes,uncirc,nointerv)

circumcisers <=- active.uncirc.nointerv[{runif{length({active.uncirc.nointerv)) <
(pop %v% "prob.circum.nointerv")[active.uncirc.nointerv])]

newpop <=- set.vertex.attribute(newpop,"circum.status”,9,circumcisers)

newpop <- set.vertex.attribute(newpop,"circum.time.bp”, 0, circumcisers)

# Non-intervention testing

nointerv <- which({pop %v% "testing.interv.status" == 0)

active.neg.or.undiag.nointerv <- intersect3(activenodes, neg.or.undiag,nointerv)

testers <- active.neg.or.undiag.nointerv[{runif({length(active.neg.or.undiag.nointerv)) =<
[pop %v% "prob.test.nointerv")[active.neg.or.undiag.nointerv])]

apparentpos <=- which(newpop %v% "inf.time.bp" > testcutoff)

apparentneg <- union{whichinewpop %v% "inf.time.bp" == testcutoff] ,which{pop %v% "inf.status" =s

testpos <- intersect(testers,apparentpos)

newpop <- set.vertex.attribute(newpop,”diag.status”,1,testpos)

=5 L i I 3
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HIV & Concurrency in Zimbabwe

AIDS Behav (2012) 16:312-322
DOT 10 1007/51 (461 -010-9858-x

ORIGINAL PAPER

Concurrent Partnerships, Acute Infection and HIV Epidemic
Dynamics Among Young Adults in Zimbabwe

Steven M. Goodreau + Susan Cassels -
Danuta Kasprzyk - Daniel E. Montano -
April Greek « Martina Morris

Our aim: Develop a generalized modeling approach for sexual
networks and HIV spread that incorporates sexual network
characteristics, and apply it to questions of acute infection
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Key social/behavioral components

» EXxplicitly model sexual network, including:
— rates of concurrency for men and women
— partnership type (marriage/live-in vs. casual)
— durations of partnerships

This paper was one of the first to do so (thanks to the University of
Washington statnet team)

July 2012

54



Methods: Exponential random graph

modeling (ERGM)

www.statnetproject.org

RGui =[]
File Edit “iew Misc Packages Windows Help

! R Console I [
=

~=lolx|

nodefactor.Race.White -0.5646 0.z500 WA 0.02392 *
Signif. codes: 0 Y*F%F Q.001 **** 0,01 **F 0.05 .7 0.1 * " 1

HNull Deviance: 25987.4 on 20910 degrees of freedom
Residual Deviance: 22Z50.5 on 20905 degrees of freedom
Dewviance: Z6736.9 on 5 degrees of freedom

ATIC: Z260.5 BIC: Z2300.2

» plot (fauxhigh)

> fauxhigh.modell <- ergm(fauxhigh~edges+nodefactor ("Race™))
> suwmmary (fauxhigh.modell)

&
Summary of model fit :

L
Formula: fauxhigh ~ edges + nodefactor ("Race") i -
MNewton-Raphson iterations: 7 ®
MCMC semple of size ML L ™
Monte Carlo MLE Results: .‘

Estimate Std. Error MCHMC s.e. p—value

edges -3.0222 0.3927 NL < le-04 **%7%
nodefactor.Race.Hisp -0.9973 0.2135 NL <« le-04 ***
nodefactor.Race.Natim -0.8522 0.2153 NA 0.00248 #%
nodefactor.Race.Other -Z.584% 1.0z07 NA 0.,00471 %
nodefactor.Race.Thite -0.5646 0.z2500 Wi 0.02392 *

Signif. codes: 0O Y**#*F 0,001 **** 0.01 **F 0.05 .Y 0.1 Y 71

HNull Deviance: 25957.4 on 20910 degrees of freedom
Residual Deviance: 2250.5 on 20805 degrees of freedom
Deviance: Z6736.9 on 5 degrees of freedom

LIC: 2260.5 BIC: 2300.2
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Results: Proportion of infections by
stage

Cumulative proportion of infection events,
by time since infection of index partner
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Alternative models:

1. Male reports instead of mid-point

Males reported an average of 0.08 more partnerships than females
did; a small difference, but one which must be dealt with. Rather
than assuming the midpoint is correct, here we assume male

reports are correct.

2. No concurrent relationships (same # of relationships; same mean

duration; but forced to be sequential)
How much does concurrency drive the epidemic here? What would

be the effect of changes in concurrency?
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Male reports instead of mid-point
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NO concurrent relations

Epidemic dies out every
time....

July 2012
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Final thoughts

* Important for non-modelers to understand assumptions behind
models (a look under the hood), and do not necessarily accept
conclusions on blind faith

Universal voluntary HIV testing with immediate
antiretroviral therapy as a strategy for elimination of HIV
transmission: a mathematical model

ReubenM Granich, Charles F Gilks, Christopher Drye, Kevin M De Cock, Brian GWilliams

Examining the promise of HIV elimination by ‘test and
treat’ in hyperendemic settings

Peter ). Dodd, Geoff P. Garnett and Timothy B. Hallett
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Final thoughts

« Effectiveness of interventions: account for
— Coverage
— Impact
— Duration
— Trade-offs

 Connections between modelers and behavioral scientists

— Realism of social and behavioral assumptions: not a “throw
away” parameter

— Collaboration from the beginning

July 2012

61



Final thoughts

« Long-term outcomes, sustainability?

« Unexpected consequences

« Unintuitive population-level impact — not a direct scale-up of
iIndividual actions

July 2012
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