Quantitative OR methodologies I

Mark Micek, MD, MPH Operations Research Mini Course August 1, 2008

Broad methodologies of OR

Modeling (classic)

- Develop mathematical model to mimic health care system
 - Manipulate to find the best possible "solution"
 - Optimize efficiency
 - Maximize X given constraints Y

Intervention-based (Population Council)

- Design/test best way to deliver services
- Similarities to quality improvement (IHI/WHO)

Intervention-based OR

Population Council Linear

1. Identify program problem

2. Generate program solution

3. Test program solution

4. Use/disseminate results

IHI Collab	<u>orative</u>
Cyclic	cal
1. <u>P</u> lan	
2. <u>D</u> o	Act Plan Study Do
3. <u>S</u> tudy	
4. <u>A</u> ct	

Step 1: Identifying the program problem

Problem usually determined in an ongoing program

- A discrepancy noted between the desired and observed situation
 - Routine program/clinic data (continuous indicators)
 - Program evaluation (point indicators)
- Feasible, effective, and sustainable solution is possible

Problem can be solved by the program manager

Step 2: Generate a program solution

Actions that a program manager can take
Has potential to make a large improvement
Effects can be measured
Easy to implement
Affordable/sustainable

Sources of solutions

How to develop a solution?

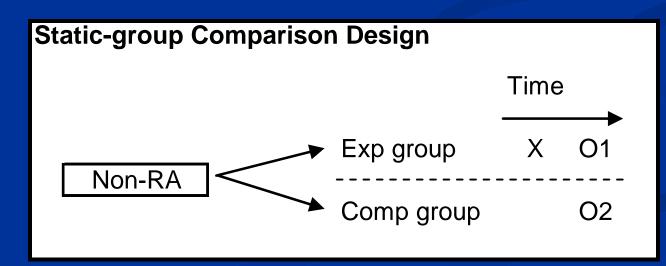
- Understand the current health system policies and workflow
- Talk to Program staff, clients
- Review data from "good" programs in your system
- Review experiences of other similar programs, scientific literature

An understanding of the system is critical to develop an appropriate solution

What if a potential solution is not obvious?

Consider an *exploratory study* to better understand problem

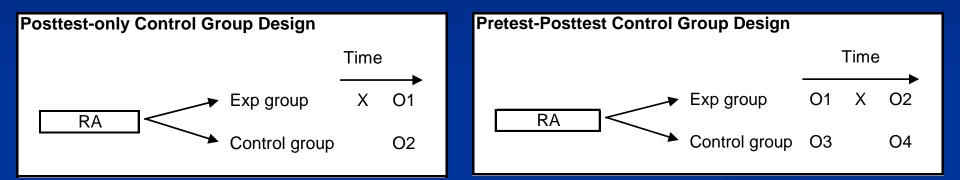
- Review of program data and experiences
- Quantitative / Qualitative research on patients / staff / policymakers
- Compare program to other programs with better indicators
- Review of previous research


- Get to a point where you can identify a solution
 - Refining not always necessary

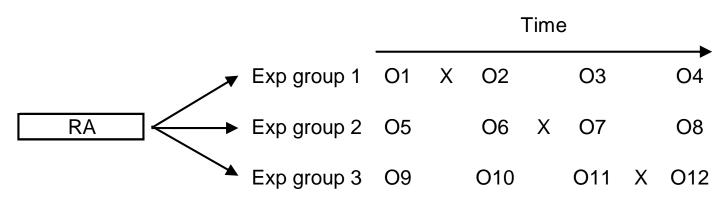
Step 3: Test program solution

Common OR study designs
 Non-experimental
 Experimental
 Quasi-experimental

Non-experimental designs: No randomization or good control group



Non-experimental designs


Advantages = easy and can get some information

- Disadvantages = Subjected to many biases (threats to validity):
 - History bias
 - Selection bias
 - Testing/maturation bias
 - Instrumentation bias
 - Differential mortality
- Typically used if little time and money, or want to know basic characteristics of an intervention (i.e. basic pre/post data, uptake, perceptions)
 - Descriptive, small case studies

Experimental designs: Random assignment & control group

Experimental designs

Advantages:

- Reduces many sources of bias:
 - Control group: reduces testing/maturation bias, instrumentation bias, history bias (stepped-wedge)
 - Randomization: reduces selection bias
- Allows best isolation of effect to intervention ("gold standard")

Disadvantages:

- Higher costs
- May be difficult or impractical
- Still subjected to
 - History bias
 - Differential mortality

Quasi-experimental designs: Non-random assignment & control group

Non-equivalent Control Group Design							
				Time			
			kp grou	01	Х	02	
Non-RA <	Control group			O3		04	
Time-Series Desi	an						
	Time						
Exp group	01	02	O3	Х	04	05	06

Stepped-Wedge Time-Series Design								
		Time						
	Exp group 1	01	Х	02		O3		04
Non-RA	Exp group 2	05		O6	Х	07		08
	Exp group 3	O9		O10		011	Х	O12

Quasi-experimental designs

Advantages:

Often times more practical than randomized studies

- Reduces many sources of bias:
 - Control group: reduces testing/maturation bias, instrumentation bias, history bias (time-series/steppedwedge)

Selection bias not reduced, but can be mitigated by matching

Disadvantages:

- Still subjected to
 - Selection bias
 - History bias
 - Differential mortality

Study issues to consider: Choosing study design

- Weigh advantages and disadvantages of complex designs
 - Money & time
 - Meaningful magnitude of effect
 - Consequences of "wrong answer" on health and resources
 - Reality of field conditions (sometimes randomization is impossible)
- Advantages of using <u>facilities</u> as unit of intervention (vs. individuals)
 - Able to look at "real-world" application
 - Easier to measure added programmatic costs (training, costs)

Study issues to consider: Choosing study outcomes

- Choice of program outputs, outcomes, and impacts
 - What are you interested in programmatically?
 - Will \uparrow testing \rightarrow \uparrow enrollment in clinic \rightarrow \uparrow starting HAART?
 - Will \uparrow number on HAART $\rightarrow \downarrow$ adherence?
 - Will ↑ number on HAART → ↓ HIV mortality?
 - Are proximal outputs good enough?
 - Are distal impacts attributable to your intervention?

Routine data vs. added data gathering

- Money & time
- Adequacy/accuracy of routine indicators

Study issues to consider: Measure progress of implementation

Important to measure if intervention was implemented as intended Evaluates feasibility of intervention Staff/patient acceptance Problems encountered and overcome Learn from experience for wider implementation How intervention was implemented may effect your results

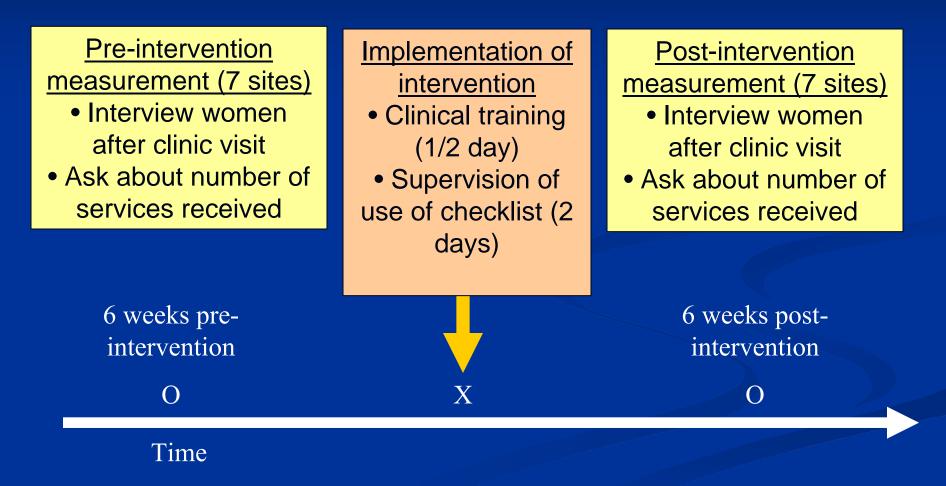
Example 1: Strategy to increase MCH service utilization in Senegal*

Program problem: Low utilization of available MCH services in health units Pre/post natal visits Child vaccinations STD testing & treatment Child growth monitoring Family planning

* Sanogo D, et al, Using Systematic Screening to Increase Integration of Reproductive Health Services Delivery in Senegal, Frontiers in Reproductive Health Program, 2005.

Interventional study

Potential solution:


Integration of services via "check-list"

- Used during outpatient visits
- Serves as clinical reminder
- Improve documentation of services provided

	be filled in by screener ient's age	Principal reason for visit				
asi the	fore the consultation, always k the client if, in addition to e principal reason for her visit,	After the consultation, always note the result of the visit (write the number of the corresponding code)				
of	e would like to receive one the following services (circle mber)	1 Offered	2 Appointment	3 Referral		
1	Prenatal consultation					
2	Vaccination for tetanus					
3	Postnatal consultation					
4	Family planning					
5	Screening or treatment for RTI/STI					
6	Vaccination of child					
7	Growth monitoring of child					

Source: Sanogo et al. 2005.

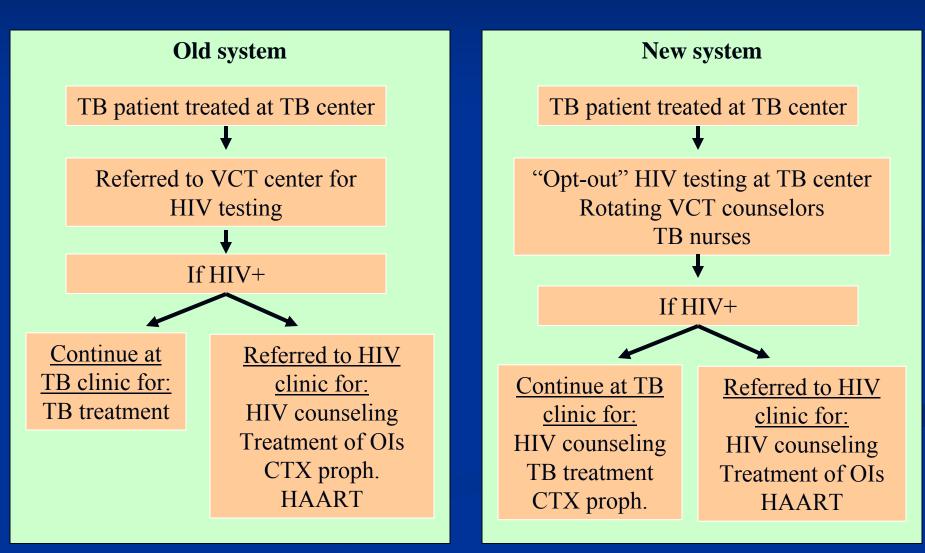
Study design: Pre/post non-experimental

Results

Table 2. Mean Services and Appointments per Visit by Health Post and Area

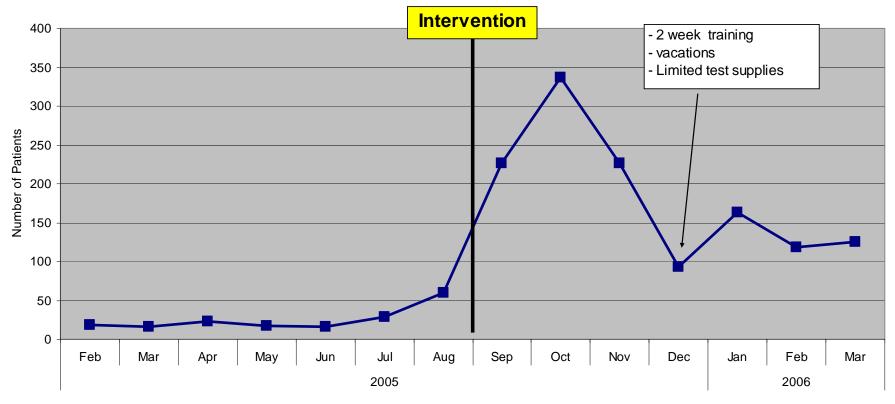
Health Posts		Services r Visit	% Change		pointments · Visit
	Pre	Post		Pre	Post
Total Dakar	1.17	1.40×	20	0.15	0.20*
HLM1	1.20	1.51*	25	0.20	0.21
Georges Lahoud	1.16	1.46*	26	0.11	0.09
Derklé	1.12	1.28*	16	0.11	0.40 ^z
Liberté IV	1.21	1.30*	7	0.10	0.01×
Total Kebemer	1.44	1.79*	35	0.18	0.20
Diokoul	1.38	1.95*	41	0.05	0.07
Gueoul	1.61	1.81×	12	0.56	0.37
Sagatta	1.27	1.59×	25	0.40	0.56*
"p<.001			+		1

Example 2: Strategy to increase HIV care utilization in TB patients in Mozambique


Program problem:

Few TB patients tested for HIV at local VCT
 New TB patients enrolled ~ 250/mo
 TB patients tested for HIV ~20/mo
 ~8% of estimated TB-HIV patients enrolled into care at HIV clinic*

Likely due to HIV testing/care system for TB patients


* Micek, MA, Integrating TB and HIV Care in Mozambique: Lessons from an HIV Clinic in Beira. CORE TB/HIV Case Study, The CORE Group, Washington DC, September 2004.

Potential solution: Change HIV care for TB patients

Study design: Time series (quasi-experimental)

TB patients tested for HIV per month

Average 25/mo (7 mos prior) \rightarrow 184/mo (7 mos after), p=.002

Remained significant after adjustment for time (p=.003)

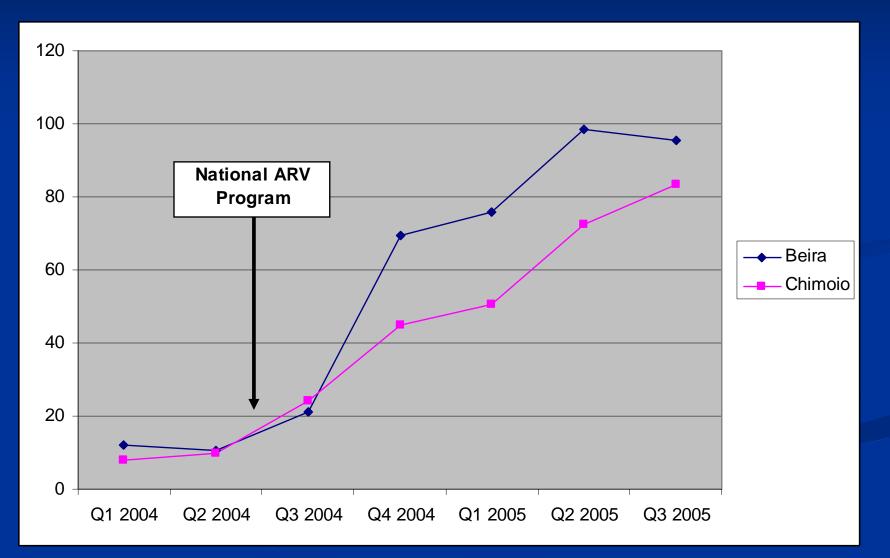
TB patients registered at the Beira HIV clinic per month, Feb 2005 - Mar 2006

Average 49/mo (7 mos prior) → 96/mo (7 mos after), p=0.001
Remained significant after adjustment for time (p=.020)

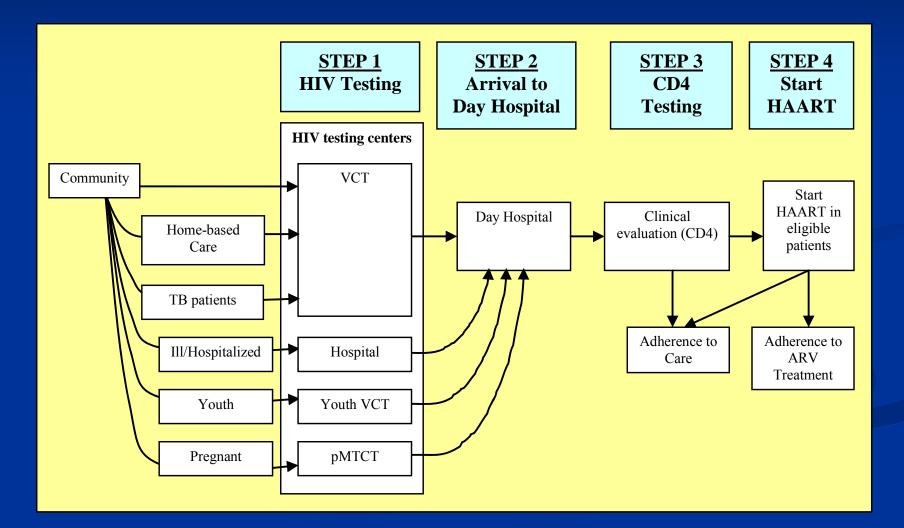
TB program patients starting HAART, by month of registration at Beira HIV clinic, Feb 2005 - Dec 2005

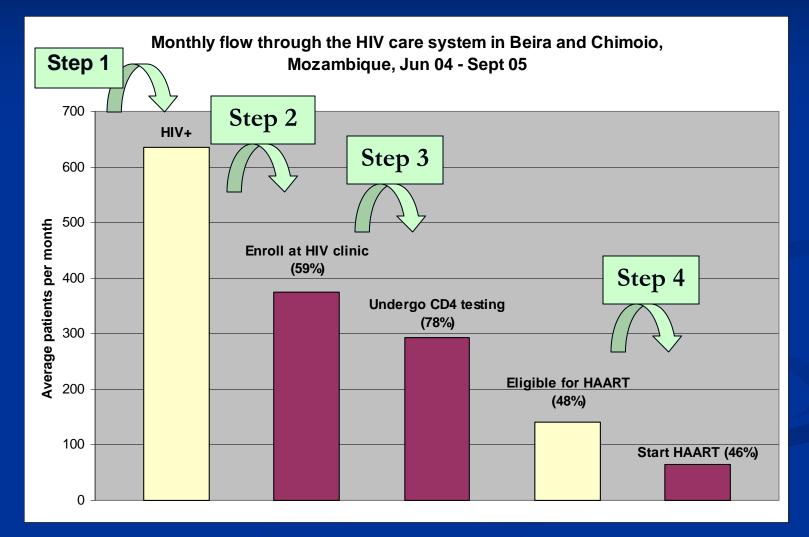
Average 18/mo (7mos prior) \rightarrow 25/mo (4mos after), p=0.23

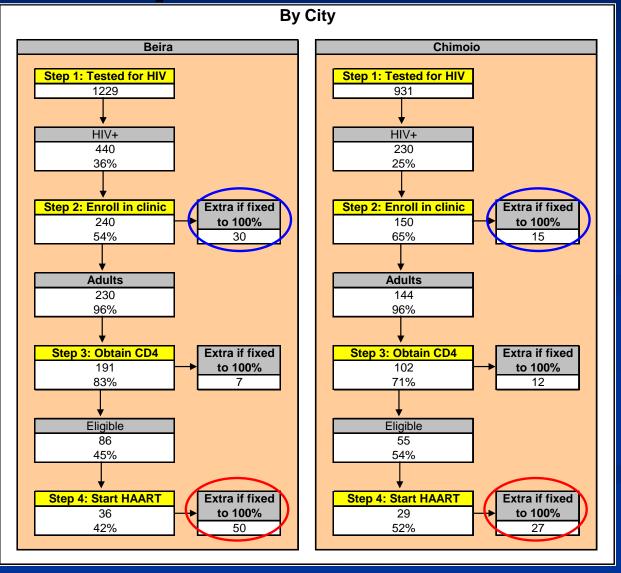
Next steps

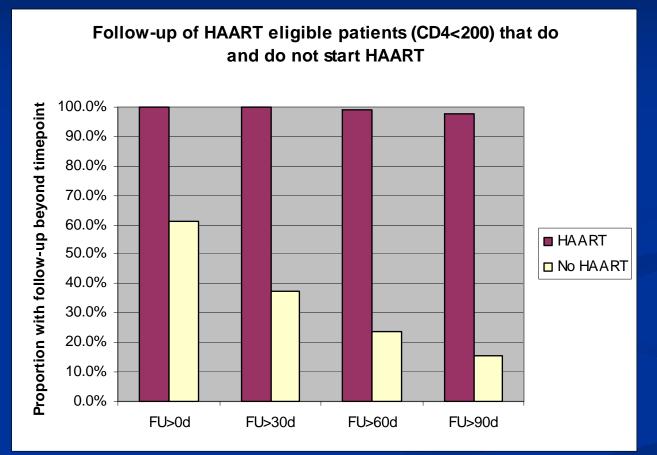

TB treatment outcome analysis pending

More work needed


- Overcome barriers to HIV testing (mostly logistical)
- Increase referral to HIV clinic— better counseling?
- Improve flow at HIV clinic—streamline TB patients?
- Decentralize more HIV services to TB sites?
 - CD4 counts
 - HAART, with appropriate personnel


Example 3: How to increase the number of patients who start HAART?


Identify steps required to start ART


Using programmatic data: Where are patients lost?

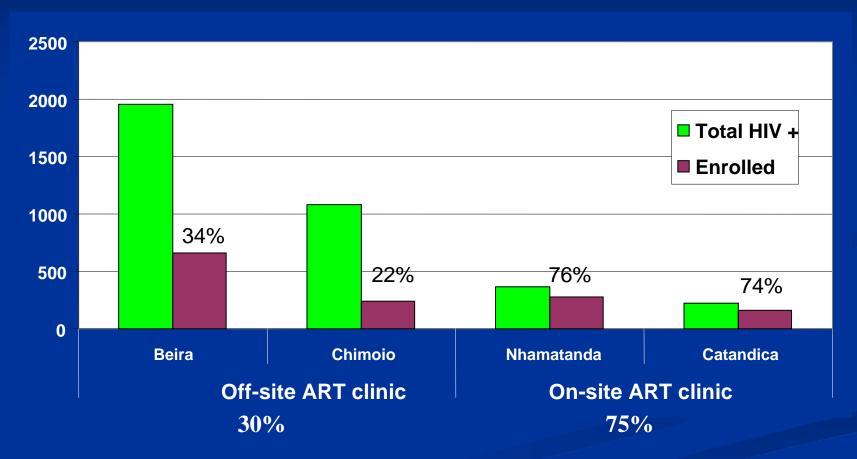
Using programmatic data: What are priorities to address?

Why do HAART-eligible patients not start ARVs (step 4)?

Poor follow-up also reported as reason for not starting HAART in other studies

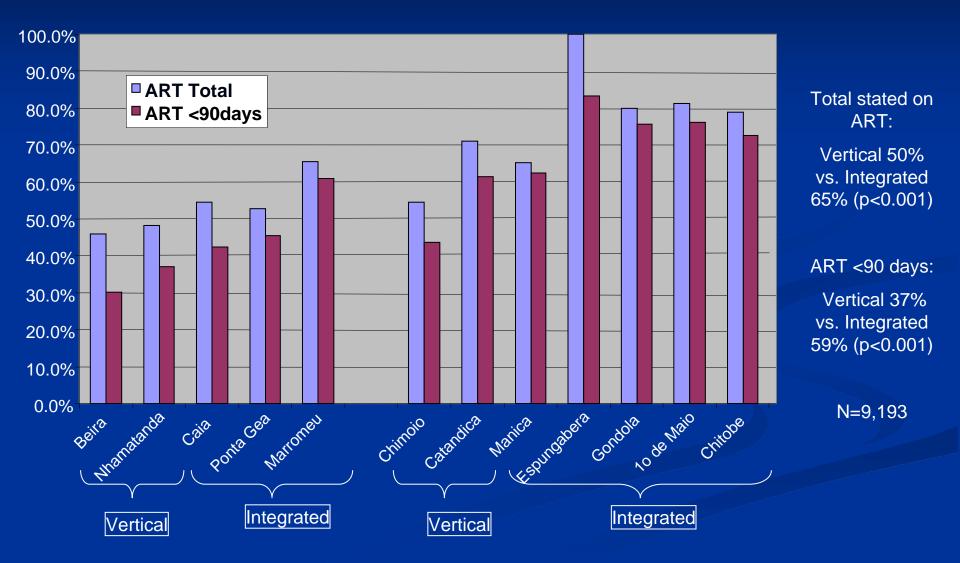
 Giordano TP et al, Factors Associated with the Use of Highly Active Antiretroviral Therapy in Patients Newly Entering Care in an Urban Clinic. JAIDS, 32:399-405.

Improving rates of starting ARVs in HAART-eligible patients


Reasons for poor follow-up

- Pre-HAART procedure too cumbersome
- Dissatisfaction with services
- Trouble paying transportation costs
- Poor understanding of clinic procedures
- Stigma of going to HIV clinic
- Death

Potential solutions


- Change workflow around HAART-eligible patients
- Improve counseling
- Improve relationship between patients and health care workers
- Decentralize ARV services

Number of HIV+ pregnant women enrolled at ART site <30 days after HIV testing

On-site ART vs. Off-site ART clinic: OR 7.2 (CI 5.9-8.8, p<0.001)

ART-eligible starting ART (Total and <90 days), Sofala and Manica, 2004-2007

Thank you

