Cluster Randomized Trials and The Stepped Wedge

Jim Hughes
UW Biostatistics
Cluster Randomized Trials

- Randomization at group level; outcome measured on individuals within the group
- Clusters may be large (cities, schools) … or small (IDU networks, families)
- Why? Individual randomization not feasible, potential contamination, or want to measure community effect
- Usually, less efficient than individually randomized trial (unless intervention effect on the community is greater than the individual effects)
- Key statistical challenge: individuals not independent
Cluster Randomized Trials

- A common error: two communities, flip a coin, one gets intervention; other gets control
- Underlying differences between communities confounded with treatment effect
- “Change from baseline” doesn’t solve the problem
- Key: Effective sample size is number of clusters, not number of individuals measured (though both are important)
Key Considerations

- What is the unit of randomization?
- How/to whom is the intervention delivered?
- How/on whom is the outcome measured?
- Examples
 - PREVEN
 - HPTN037
 - Mwanza HIV prevention trial
Common Trial Designs

<table>
<thead>
<tr>
<th>Parallel</th>
<th>Crossover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Time</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>
The stepped wedge design

- Time of crossover is randomized; crossover is unidirectional
- Need to be able to measure outcome on each unit at each time step
- Multiple observations per unit; observations need to be “in sync” to control for time trends (assumed similar across clusters)
- If CRT, then individuals at each time can be same (cohort) or different (cross-sectional)
Reasons for choosing the Stepped Wedge Design

• Efficiency: Units act as their own control, so fewer units needed (same as cross-over design)

• Logistical or financial - cannot introduce the intervention in all units at once

• Evaluate the community effectiveness of an intervention previously shown to be efficacious in an individually randomized trial or in a different setting; systematically evaluate new program

• To study the effect of time on intervention effectiveness (i.e. seasonality, time since introduction)
Some Examples

- Effect of routine Isoniazid preventive therapy on tuberculosis incidence in HIV+ men in S. Africa (Grant et al, 2005)
- Individually randomized
- Due to constraints on clinic capacity employees of a mining company were invited to enroll in the study in a random sequence
- Analysis compared tuberculosis episode rate before and after clinic enrollment and adjusted for calendar time and baseline disease severity
Some Examples

• Introduction of HBV vaccination in infants in The Gambia (The Gambia Hepatitis Study Group, 1987)
• Cluster randomized (Health districts)
• 18 health districts, but program could not be implemented in all districts at the same time
• Immediate outcome: HBV antibody titre
• Longterm outcome: Hepatocellular cancer and other liver disease
Some Examples

- HPTN054: Comparison of combined versus targeted provision of Nevirapine to HIV+ pregnant women

- Cluster randomized (health clinics)

- Intervention: Combined vs targeted NVP provision during antenatal care

- Endpoint: Nevirapine in cord blood at delivery

- Time

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>C</td>
<td>× 2</td>
</tr>
<tr>
<td>T</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

- “Washout” period between times 1 and 2 to allow women to deliver
Some Examples

- Expedited partner treatment for Gc and Ct in WA state
- EPT shown to be effective in reducing reinfection in IRT (Golden et al., 2005) in a previous UW project
- EPT to be implemented throughout Washington state; logistically difficult to implement the program in all counties simultaneously
- Solution: use a SW design; (24) counties are the randomization units; randomize 6 per time period
- Outcome (STI) measured in sentinel sites
- Six month intervals – 3 to implement, 3 to assess outcome
WA State EPT

<table>
<thead>
<tr>
<th>county</th>
<th>0</th>
<th>6</th>
<th>12</th>
<th>18</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
</tbody>
</table>

Time (mo) $	imes 6$
Model:
\[Y_{ijk} = \mu + \alpha_i + \beta_j + X_{ij}\theta + e_{ijk} \]

\[\alpha_i \sim N(0, \tau^2) \]
\[e_{ijk} \sim N(0, \sigma^2) \]

Key issue in a CRT:
\[\text{Corr}(Y_{ijk}, Y_{ij'k'}) = \frac{\tau^2}{(\tau^2 + \sigma^2)} \neq 0 \]

Note: Some authors express the correlation in terms of the coefficient of variation (CV) between clusters – CV = \(\frac{\tau}{\mu} \)
Statistical Issues - Power

- Power = Probability of detecting a treatment effect when the treatment really works

- Depends on …
 - strength of treatment effect
 - number of clusters
 - number of steps
 - number participants per cluster per step,
 - variance components: σ^2 (easy to know), τ^2 (hard to know).
Power – SW vs parallel

HPTN054

![Graph showing Power vs Intercluster coefficient of variation for stepped wedge and parallel designs.](image)
Power vs RR

WA State EPT

24 counties, 4 randomization steps, \(N = 100 \)
Power vs N per cluster

24 counties, 4 randomization steps, RR = 0.7
Power vs # of randomization steps

WA State EPT

Power for RR = 0.7
Power – Delayed treatment effect

WA State EPT
Statistical Issues - Analysis

- **Paired t-test** *(easy)*
 - Analyze cluster means, before vs after
 - Likely biased if there are time trends

- **Repeated cross-sectional (in time) comparisons** *(sorta’ easy)*
 - Loses strength of within-unit comparisons; how to combine?

- **LMM** *(advanced, but standard)*
 - Analyze cluster means using both within & between info
 - Must have equal cluster sizes

- **GEE, GLMM** *(advanced)*
 - Analyze individual level data
 - Unequal cluster sizes ok
Research Directions

- Multicomponent interventions
- Various possibilities

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1+2 ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>1+2 ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1+2 ...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1+2 ...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1+2 ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>1+2 ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1+2</td>
<td>1+2 ...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1+2 ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>1+2 ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1+2</td>
<td>1+2 ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1+2</td>
<td>1+2 ...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1+2</td>
<td>1+2 ...</td>
<td></td>
</tr>
</tbody>
</table>
Research Directions

- Delayed intervention effects
 - How to estimate
 - Powering trial if delayed effect anticipated
Research Directions

- Rolling cohorts for evaluation

<table>
<thead>
<tr>
<th>etc.</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

• Stepped wedge designs are useful for “phase IV” trials, to evaluate the effect of time on the intervention, and as a way of dealing with logistic difficulties of implementing the intervention everywhere at once

• Power is relatively insensitive to CV

• Maximize the number of steps

• Intervals should be long enough to capture the full treatment effect

• Individual level analyses are necessary if cluster sizes vary

• Variations on this theme are possible
Thanks

Mike Hussey, MS (Hussey and Hughes, CCT 28:182 – 191, 2007)
Matt Golden, MD
Jeff Stringer, MD
Alternative models

Also possible to write models for …
- Cluster by Time interaction
- Cluster by Treatment interaction (treatment effect varies by cluster)
- Treatment by Time interaction (treatment effect varies with time)
- Treatment effect varies with time since introduction of intervention