

High Throughput Analysis of B Cell Dynamics and Neutralizing Antibody Development During Immunization with a Novel Clade C HIV-1 Envelope

Cynthia A. Derdeyn, PhD Professor and Vice Chair of Research Department of Laboratory Medicine and Pathology University of Washington, Seattle, WA

UW/Fred Hutch CFAR Research Seminar Series 2023-2024 October 5, 2023

HIV/AIDS in perspective, 2022

- 39 million persons living with HIV/AIDS in 2022, 26 million in Africa
- 1.3 million new infections
- One life lost to AIDS every minute (630,000)
- 9.2 million persons living with HIV/AIDS not receiving ART
- 2.1 million persons living with HIV/AIDS receiving ART but not virally suppressed
- 130,000 new infections among children

Increasing infections: Eastern Europe Central Asia Middle East North Africa Asia and the Pacific

📕 Decline of 70% or more 📕 50–69% decline 📕 10–49% decline – Stable (–10% to 10% change) 📕 10–49% increase 📕 50–69% increase 📕 Increase of 70% or more

Source: UNAIDS epidemiological estimates, 2023 (https://aidsinfo.unaids.org/).

Is a protective HIV vaccine possible?

	Vaccine Trial	Main Components	Years	Locations	Cohort	Outcome	
	VAX 004	Bivalent Env gp120 protein, , Clade B	1999-2003	US	HIV discordant couples	No efficacy	
	VAX 003	Bivalent Env gp120 protein, Clade B and CRF01_AE	1999-2003	Thailand	Intravenous drug users	No efficacy	
	HVTN 503	Adenovirus type 5 expressing viral genes, no Env	2005-2007	US	Men who have sex with men	Stopped for futility	
	HVTN 504	Adenovirus type 5 expressing viral genes, no Env	2005-2007	South Africa	Heterosexual individuals	Stopped for futility	
	RV144	ALVAC Canarypox and Bivalent Env gp120 protein, Clade B and CRF01_AE	2004-2010	Thailand Community-based		31% efficacy, but controversial and not reproducible	
	HVTN 505	DNA and Adenovirus type 5 expressing viral genes, no Env	2010-2013	US	Men who have sex with men	Stopped for futility	
	HVTN 702	ALVAC Canarypox and Bivalent Env gp120 protein, Clade C	2016-2020	South Africa	Heterosexual individuals	Stopped for futility	
	HVTN 705	Adenovirus type 26, 4 mosaic sequences, Env gp140 protein, Clade C, Imbokodo	2017-2022	Sub-Saharan Africa	Women	Stopped for futility	
	HVTN 706	Adenovirus type 26, 4 mosaic sequences, Env gp140 protein, Clade C, MOSAICO	2019-2024	Americas and Europe	Men and transgender persons	Stopped for futility	
	HVTN 703	IV infusions of bnAb VRC01, AMP study	2016-2021	Sub-Saharan Africa	Women	No efficacy	
	HVTN 704	IV infusions of bnAb VRC01, AMP study	2016-2021	US, Switzerland, South America	Men and transgender persons	No efficacy	

AMP study finding: Most circulating strains from two major clades B and C are resistant to neutralization by bnAb VRC01, which was isolated in 2010 from a clade B subject who had been infected for more than 15 years

Global HIV-1 diversity is an increasing challenge for vaccines

GENETIC DIVERSITY AND EVOLUTION

Country Level Diversity of the HIV-1 Pandemic between 1990 and 2015

Ojoris Hemelaar,^{ab} Shanghavie Loganathan,* Ramyiadarsini Elangovan,* Jason Yun,* Leslie Dickson-Tetteh,* Shona Kirtley,^c WHO-UNAIDS Network for HIV Isolation and Characterization

*Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, United Kingdom *Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom *Careford Extractions In Multicle Michael Department of International Resonantiations and Neurolacolateal Sciences. Leavestword Oxford, Oxford, Llabed Kingdom

This study by Hemelaar, published in 2020, demonstrated that HIV is diversifying at a country level

This highlights the increasing challenges to HIV vaccine development, use of passive bnAbs, diagnostic assays, drug resistance, and detection of virus

Neutralizing antibodies are key to vaccine induced protection against HIV-1 and other viral pathogens

- Target the envelope (Env) glycoproteins gp120 and gp41 (ectodomain)
- Passively administered neutralizing antibodies protect against challenge with a susceptible HIV/SHIV variant in nonhuman primate models
- In vitro neutralization IC50 titer is generally predictive of passive protection
- In the AMP study, VRC01 had better efficacy against sensitive viruses
- Recent studies have shown a correlation between high levels of neutralizing antibodies elicited by trimeric envelope (Env) immunogens and protection against autologous virus (SHIV) in nonhuman primate models
- Neutralizing antibodies are a common correlate of vaccine-mediated protection against various viral pathogens (measles, SARS-CoV-2, HPV, flu, etc.)

HIV broadly neutralizing antibodies (bnAbs), which sometimes develop after many years of infection, are the 'holy grail' for a vaccine

The HIV-1 stabilized BG505 SOSIP envelope (Env) gp140 trimer (various versions) is a prototype, widely used immunogen

AB Ward and IA Wilson, Immunological Reviews 2017

trials 16 high resolution crystal structures

More than 100 peer reviewed articles

This immunogen is in multiple phase I

Early results have revealed challenges in eliciting neutralizing antibody responses in humans although only one study has published results to date (VRC)

BG505 SOSIP immunization of rhesus macaques leaves many with serum neutralization titers below the threshold of protection

UM1 30 immunized rhesus macaques

UM6 30 immunized rhesus macaques

25/60 were at the limit of detection (ID50 titer of 20) on the day of challenge

12/60 were above the threshold of protection (ID50 of ~300) for SHIV.BG505

Neutralization titers using the same BG505 SOSIP immunogen and adjuvant at the same primate center vary across trials

p = 0.0012, Mann-Whitney test

P Aruchalanam, T Charles, et al., *Nature Medicine 2020* T Charles et al., *PLoS Pathogens 2021*

P Ralli-Jain, D Rosales, A Aftab, unpublished data

A major interest for my lab that has evolved over the years is how to consistently elicit robust autologous tier 2 neutralizing antibodies with HIV-1 Env immunogens and vaccines Taking a step back: transmitted/founder (T/F) HIV-1 variants are those that establish a new infection and subsequently drive development of neutralizing antibody responses and viral escape

HIV-1 escapes from neutralizing antibodies over time by increasing diversity in the envelope (Env), mainly in gp120

M Murphy et al., PLoS Pathogens 2013

R Rong et al., PLoS Pathogens 2009

PLWH develop vastly different levels of plasma neutralizing antibody breadth (sometimes bnAbs); what role do the T/F Env and escape variants play?

CRF01 CRF01 CRF07 CRF07 AC NEG Α В G С С 398F1 CNE8 X2278 **TRO11** X1632 CNE55 BJOX00200 CE1176 246F3 CE0217 VSVg Median IC50 # neutralized Subject CH119 Z1800M Z1792M Z185F R1141M Z1024F R1142F Z221M Persons living with Z1022M HIV -1 in Africa Z1023M Z1781M whose plasma was Z205F R53F tested at approx. 3 R283F years after infection R774F R880F occurred Z153M R463F Z1047M Z201M R66M R1135M Median

Plasma ID50 neutralization titers against a global panel of HIV-1 Envs

l Moderate nAb

Weak or no nAb

We focused on T/F Envs from two PLWH with distinct outcomes

S Smith et al., PLoS Pathogens, 2016

S Smith et al., Front Immunology, 2019

A vaccination study was carried out in rhesus macaques using DNA, MVA, and Env gp140 trimer or gp120 monomer based on the two T/F Envs

All RM developed high titers of Env-specific IgG

Only 2 RM in group 3 developed serum nAb

Week 74

ND

Testing two 5-month escape variants from PLWH Z1800M, Envs D10 and D11, revealed that nAb elicited by immunization mimics early HIV-1 infection

RLk17 week 63 serum

RLk17 week 55 serum

RLk17

ROa17 week 55 serum

ROa17

S Welbourn et al., PLoS Pathogens 2022

ROa17 week 63 serum

The Z1800M 5-month Envs D10 and D11 evolved from the T/F Env in gp120 regions V2, V4, CD4bs, V5, and gp41

S Smith et al., PLoS Pathogens 2016

S Welbourn et al., PLoS Pathogens 2022

Resistance to serum neutralization was dependent on two residue changes (D10) or one residue deletion (D11) in V5 similar to a monoclonal antibody from PLWH Z1800M

Monoclonal antibodies (mAbs) from RLk17 (lineage 1719) at weeks 26, 63, and 90 also neutralized 21800M T/F Env by targeting V5/CD4bs

mAbs isolated by antigen specific B cell sorting, single B cell VDJ PCR, and 10X VDJ high throughput sequencing

RLk17 mAbs from a second lineage (2778) also from weeks 26, 55, and 63 also neutralized by targeting V5/CD4bs

mAbs isolated by antigen specific B cell sorting, single B cell VDJ PCR, and 10X VDJ high throughput sequencing

RLk17 neutralizing mAbs so far..

- Two independent neutralizing B cell lineages arose following MVA immunization
- Same heavy and light chain germlines
- Same target
- Unmutated rearranged or high identity precursors neutralized Z1800M T/F Env
- Neutralization potency increased with somatic hypermutation from week 26 to week 63/90
- Similar genotypically and phenotypically to the human Z1800M 1A8 monoclonal antibody (and plasma) from early infection

The V5/CD4bs region targeted by neutralizing antibodies in rhesus macaques and the PLWH is exposed in Z1800M T/F Env

Computational modeling of the glycan shield, Drs. Srirupa Chakraborty and Gnana Gnanakaran, Los Alamos National Laboratory

S Welbourn et al., *PLoS Pathogens* 2022

The exposed V5 loop in the T/F Env becomes shielded by the glycan at N450 when the proximal residues are mutated or deleted, representing a novel multi-pathway escape mechanism

T/F Env	TRDGGIT	EES <mark>NNT</mark> EIF	RPGGGDMRD
5-month D10	T-(G -	
5-month D11		•	

The dynamic glycan shield does not cover this glycan hole or the proximal CD4bs in the T/F Env leaving it vulnerable to neutralizing antibodies

S Welbourn et al., PLoS Pathogens 2022

Mass Spec glycan profiling, computational glycan modeling

These vaccine elicited mAbs are not broadly neutralizing but they do target the CD4bs and potentially overlap with VRC01 contact residues

The CD4bs/VRC01 epitope is more exposed in Z1800M Env than in BG505 SOSIP

High throughput single cell VDJ analysis in all RMs revealed widespread persistence of non-neutralizing B cell lineages with a notable lack of DNA primed lineages after MVA and protein immunizations

The neutralizing B cell lineages in RLk17 diverged significantly over time from their most recent common ancestor, gaining potency, but some nonneutralizing lineages also diverge at similar levels

Clone Number	mAb tested	Time point	IC50 (ug/ml)	%V gene SHM	
496	2D6	Week63	25	7.17%	
965	2B8	Week63	25	5.02%	
605	2G5	Week63	25	4.68%	
2549	2D1	Week63	25	5.41%	
2109	V5-1A10	Week63	25	6.06%	
2866	2A10	Week63	25	8.97%	
	22UW4-6	Week26	25	1.01%	
	22UW4-7	Week26	25	3.02%	
2778	22UW4-8	Week55	0.44	6.04%	
	22UW4-9	Week63	0.05	4.03%	
	22UW4-10	Week63	0.07	7.72%	
	22UW4-1	Week26	1.26	0.00%	
	22UW4-2	Week26	0.27	3.69%	
	22UW4-3	Week26	0.09	2.69%	
	V5-1B1	Week63	0.23	7.05%	
	V5-1B3	Week63	0.25	5.71%	
	V5-1C4	Week63	0.16	5.71%	
1710	V5-1C10	Week63	0.10	4.70%	
1/19	V5-1D7	Week63	0.71	7.38%	
	V5-1E9	Week63	0.11	5.71%	
	V5-2A1	Week63	0.12	7.38%	
	V5-2D10	Week63	0.19	7.05%	
	V5-2D11	Week63	0.17	5.03%	
	22UW4-4	Week90	0.07	9.06%	
	22UW4-5	Week90	0.05	10.40%	

The neutralizing lineages in RLk17 were robust in their expansion and persistence within memory B cells and plasmablasts and they were highly abundant before serum neutralizing activity was detected (week 26)

RLk17 neutralizing lineage 1719 continued to undergo SHM for 29 weeks after the final immunization while lineage 2778 was not detected at this time

The RLk17 neutralizing lineages underwent extensive SHM/toggling over time in some framework regions as well as the CDR regions

Using individualized germline databases for all RMs, RLk17 was the only Z1800M immunized RM that harbored the neutralizing VH germline allele

RM ID	Vaccine / Group	Neut germline	Closest germline to IGHV4-NL_21*01_S4478	% identity
RGi17	R66M gp120		IGHV4-NL_22*01_S2393	96.56
RLf17	R66M gp120	IGHV4-NL_21*01_S4478		100
RLI17	R66M gp120		IGHV4-NL_21*01_S0138	95.88
RTe17	R66M gp120		IGHV4-NL_22*01_S2393	96.56
RVh17	R66M gp120	IGHV4-NL_21*01_S4478		100
RPh17	R66M trimer		IGHV4-NL_22*01_S2393	96.56
RTm17	R66M trimer		IGHV4-NL_21*01_S0138	95.88
RVe17	R66M trimer	IGHV4-NL_21*01_S4478		100
RVn17	R66M trimer		IGHV4-NL_21*01_S0138	95.88
RWb17	R66M trimer		IGHV4-NL_20*01_S1055	96.23
ROa17	Z1800M gp120		IGHV4-NL_21*01_S0138	95.88
RPz16	Z1800M gp120		IGHV4-NL_23*01_S1494	96.22
RRb17	Z1800M gp120		IGHV4-NL_21*01_S0138	95.88
RLk17	Z1800M gp120	IGHV4-NL_21*01_S4478		100
15C172	Z1800M trimer		IGHV4-NL_21*01_S0138	95.88
MA277	Z1800M trimer		IGHV4-NL_21*01_S0138	95.88
RFj17	Z1800M trimer		IGHV4-NL_21*01_S0138	95.88
RSb17	Z1800M trimer		IGHV4-NL_21*01_S0138	95.88
RYf17	Z1800M trimer		IGHV4-NL_21*01_S5333	99.66

Conclusions from the Z1800M project to date

- Z1800M T/F Env has a uniquely exposed V5/CD4bs region that makes it a candidate for further development and strategic manipulation
- Neutralizing B cell precursors in RLk17 were activated by MVA immunization; early engagement is important to not be competed out by the many other non-neutralizing specificities that are also elicited
- Neutralizing B cell precursors in RLk17 could neutralize at various levels prior to SHM
- Certain germlines may be more amenable to developing neutralization than others; also dependent on the Env immunogen
- SHM in the framework regions appear to be important for affinity maturation and gaining neutralization potency
- HIV-1 T/F Env proteins do contain 'blueprints' for neutralizing antibody development, likely based on glycan coverage, which follows a similar path in humans and rhesus macaques

Where is this project going from here? Use evolution to inform Z1800M Env immunogen design to try to elicit some heterologous neutralization breadth by targeting CD4bs

Glycan hole positions: 258 259 286 326 328 359 364 369 372 373 374 375 376 378 383 384 386 387 417 418 419 445 457 467 470

The T/F Env has a uniquely exposed V5/CD4bs region that makes it an attractive candidate for further development and strategic manipulation

This exposed region is targeted by autologous neutralizing antibodies

Absent PNGS	Glycan hole area due to absent PNGS	Glycan hole area due to cumulative addition of PNGS	Glycan hole positions covered by absent PNGS
N386	744.27	744.27	258 259 328 364 369 372 373 374 375 383 384 386 387 417 418 419 470
N295	157.9	157.9	376 378 445

42 months later (~6-12 months after high plasma breadth developed) CD4bs coverage has changed

Interestingly, these Env variants also lost a glycan critical to V2 apex targeted bnAbs, which could also have been involved in breadth

Glycan hole positions: 124 125 127 153 159 160 161 162 166 167 168 169 170 171 172 286 307 308 326 376 378 445 459 466

Absent PNGS	Glycan hole area due to absent PNGS	Glycan hole area due to cumulative addition of PNGS	Glycan hole positions covered by absent PNGS
N160	1356.9	1356.9	124 125 127 159 160 161 162 166 167 168 169 170 171 172 307 308
N295	157.9	157.9	376 378 445

Longitudinal Env sequence analysis by Elena Giorgi, FHCC https://www.hiv.lanl.gov/content/sequence/GLYSHIELDMAP/glyshieldmap.html

Determine if/how the V5 domain regulates CD4bs exposure in Z1800M Envs

		V00	V02	V06	V12	V18	V24	V30	V36	V39	V42	_
	GITEESNNT-EIFRPG	0.994	0.996	0.001	0	0	0	0	0	0	0	
	GTTGESNNT-EIFRPG	0	0	0.245	0	0	0	0	0	0	0	
	GITESNNT-EIFRPG	0	0	0.113	0	0	0	0	0	0	0	Single DNC at 166
	GDTGESNNTEEIFRPG	0	0	0	0.326	0	0	0	0	0	0	Single Pind at 400
	GDTAESNNTEEIFRPG	0	0	0	0.283	0	0	0	0	0	0	
	GTNNT-EIFRPG	0	0	0	0	0.812	0.011	0	0	0	0	
	GKSNNTESNNT-EIFRPG	0	0	0	0	0.034	0.314	0.157	0.001	0	0	
	GTTESNNTESNNT-EIFRPG	0	0	0	0	0.039	0.459	0	0	0	0	
	GTTESNNTESNNT-ETFRPG	0	0	0	0	0	0.039	0.484	0	0	0	PNG Gain at 464
	GKSNNTESNNT-ETFRPG	0	0	0	0	0	0	0.115	0.002	0	0	
	GTPESNNTESNNT-ETFRPG	0	0	0	0	0	0	0.037	0.792	0.143	0	
	GTPESNNPESNNT-ETFRPG	0	0	0	0	0	0	0	0.041	0.545	0.140	Loss of 1 PNG
\rightarrow	GTPESNNP-ETFRPG	0	0	0	0	0	0	0	0	0.007	0.427	Loss of both DNCs
	GTPESN-T-ETFRPG	0	0	0	0	0	0	0	0	0	0.104	LOSS OF DOLT PINGS
	Mean Number of PNGs	1.00	1.00	0.98	1.05	1.08	1.99	1.98	1.87	1.22	0.53	
	Mean V5 Length	14.00	14.00	13.96	14.59	10.81	17.18	17.30	17.63	17.90	14.98	

→ V5 influences VRC01 and autologous mAb neutralization

→ V5 to be tested

Transitory increase in length and PNGs observed prior to breadth could be driven by escape from V5/CD4bs neutralizing antibodies

Other Research Projects and Directions

- Developing and testing Z1800M based immunogens using viral evolution, trimer stabilization, computational modeling (Kelly Lee, Gnana Gnanakaran, Noah Sather, Elena Giorgi)
- Tracking and structurally characterizing neutralizing antibodies and their epitopes elicited in BG505 SOSIP immunized rhesus macaques (Marzena Pazgier and Steve Bosinger)
- Structure, function, and modeling of HIV-1 Env-Matrix interactions in the viral particle (Kelly Lee, Gnana Gnanakaran, Michael Zwick, Gaurav Bhardwaj)
- Development and testing of novel tenofovir-based analogues modified for improved bioavailability and potency; evaluating viral diversity and resistance (Eric Miller, Nicole Pribut)
- Developing novel nucleic acid-based HIV vaccines (Amit Khandar, Noah Sather, Deb Fuller, Elena Giorgi)

<u>UW Derdeyn Lab:</u>

Areeb Aftab

Pooja Ralli-Jain, PhD

David Rosales

Fariba Whitman, PhD

Emory Derdeyn Lab: Samantha Burton, MS Tysheena Charles, PhD Courtney Ferrebee, PhD Salar Khan, PhD Rohini Mopuri, MS S. Abigail Smith, PhD Sarah Welbourn, PhD **Emory Bosinger Lab:** Steve Bosinger, PhD Amit Upadhay, PhD Kathryn Pelligrini, PhD Kirti Karunakaran, PhD Los Alamos National Laboratory:

S. Gnanakaran, PhD

Srirupa Chakrobarty, PhD

Steve Bosinger, PhD

<u>University of Wisconsin-Madison:</u> Elizabeth Wright, PhD Jae Yang, PhD

University of Georgia Complex Carbohydrate Center: Anne Gleinich, PhD

The definition, Fild

Parastoo Azadi, PhD

<u>Rwanda-Zambia Health Research Group:</u> Susan Allen, MD, MPH Etienne Karita, MD William Kilembe, MD Staff, site investigators, and participants

Emory Collaborators: Eric Hunter, PhD Rama Amara, PhD

Kiran Gill, PhD

Gnana Gnanakaran, PhD

Emory National Primate Research Center: R. Paul Johnson, MD, PhD Stephanie Ehnert Jennifer S. Wood, DVM Veterinarians, technician, and animal care staff FHCC: Elena Giorgi, PhD Other support: International AIDS Vaccine Initiative NIH: R01-AI58706 (CD) R01-AI128837 (CD) R01-AI174979 (CD) S10-OD026799 (SB) P30-IA050409 (Emory CFAR) P51-OD011132 (ENPRC)

Tysheena Charles, PhD

Abbie Smith, PhD Samantha Burton, MS Sarah Welbourn , PhD

Fariba Whitman, PhD David Rosales Areeb Aftab Pooja Ralli-Jain, PhD