Can Metabolomics and Quantitative CT Improve Endotyping and Phenotyping of Chronic Lung Disease Among Youth with HIV?

Engi F. Attia, MD MPH ATSF Assistant Professor Pulmonary, Critical Care and Sleep Medicine Adjunct Assistant Professor, Department of Global Health University of Washington School of Medicine

Outline

Background

Chronic lung disease (CLD)

• HIV

• Children and Adolescents

CLD phenotypes and endotypes in YLWH

Research at the Hope Center

Next steps and future directions

Summary

Outline

Background

Chronic lung disease (CLD)

- HIV
- Children and Adolescents

CLD phenotypes and endotypes in YLWH

Research at the Hope Center

Next steps and future directions

Summary

Globally, chronic lung disease (CLD) accounts for 7% of deaths and 4% of DALYs

http://www.who.int/respiratory/publications/ global_surveillance/en/index.html

- Communicable diseases, maternal and perinatal conditions, nutritional deficiencies
- Cardiovascular disease

Cancer

- Chronic respiratory diseases
- Diabetes
- Other chronic diseases
- Injuries

CLD and HIV in Kenya

DALYs

YLD

Shift in HIV-related pulmonary complications toward CLD among youth with HIV (YLWH)

Majority have ≥ 1 chronic respiratory symptom

Hypoxia after submaximal exercise (12-38%)

Radiographic abnormalities common (>50%)

Prevalence of impaired lung function:

- Up to 45% in several sub-Saharan African countries
- ~33% in the U.S.

Ferrand CID 2012; Rylance AIDS 2016; Mwalukomo J Ped Infect Dis Soc 2016; Githinji Ann ATS 2017; Shearer JACI 2017; Attia AIDS 2018

Pathophysiology of CLD in youth with perinatally-acquired HIV

- Early life factors linked with impaired lung function later in life
 - Fetal oxygen/nutrient delivery
 - Low weight at birth and during childhood
 - Malnutrition
 - Inhaled pollutants

Pathophysiology of CLD in youth with perinatally-acquired HIV

- Early life factors linked with impaired lung function later in life
 - Fetal oxygen/nutrient delivery
 - Low weight at birth and during childhood
 - Malnutrition
 - Inhaled pollutants
- Unique consideration in YLWH → longstanding HIV during critical periods of lung, immune development
 - Associated with greater prevalence of end-organ injury
 - Chronic inflammation, immune activation, endothelial activation, etc.

Youth disproportionately affected by HIV

- In 2022, ~1.65 million youth aged 10-19 years old were living with HIV (140,000 new infections)
- Between 2005 and 2016, number of youth:
 - Living with HIV **increased by 30%**
 - Dying due to HIV-related illnesses **tripled**
- Most YLWH live in LMICs
 - 85% in sub-Saharan Africa; 73% of new infections
- >I million additional YLWH anticipated by 2030 (~183,000 annual new HIV infections)

Adolescent age is an independent risk factor for abnormal spirometry among people living with HIV in Kenya

Adolescent age is associated with a 3-fold risk* of abnormal lung function among people with HIV

*aOR 3.2 (95%CI 1.5-7.0) adjusted for CD4, BMI, WHO HIV stage, TB, paraffin/kerosene, smoking Lung growth lags in YLWH, despite ART initiation at 4 yrs old

Longitudinal changes in spirometry in South African youth with PHIV on ART

Githinji Clin Infect Dis 2020;70(3):483-90

Outline

Background

Chronic lung disease (CLD)

• HIV

Children and Adolescents

CLD phenotypes and endotypes in YLWH

Research at the Hope Center

Next steps and future directions

Summary

Phenotypes

Observable characteristics

- Symptoms
- Physical exam

Commonly available clinical data

- Spirometry (pre-/post-bronchodilator)
 +/- plethysmography
- Chest imaging
- Laboratory values, including blood lgE, eos
- 6MWT
- History exposures, risk factors

MAJOR ARTICLE HIV/AIDS

Chronic Lung Disease in Adolescents With Delayed Diagnosis of Vertically Acquired HIV Infection

116 participants

- Mean age: I4 ± 2.6 years (HIV dx: I2 years)
- 69% receiving ART

Chronic cough (66%), reduced exercise tolerance (21%), multiple respiratory infections in past year (41%), hypoxemia with exercise (29%)

41% with FEV₁ <80% predicted; poor bronchodilator response

31/56 (55%) had mosaic attenuation on HRCT \rightarrow obliterative bronchiolitis?

YLWH had significantly more chronic respiratory symptoms and oxygen desaturation than adults with HIV

YLWH had a high prevalence of abnormal spirometry patterns

	Adolescents (10-19 yo) n = 52	Adults (≥20 yo) <i>n</i> = 372	P-value
Abnormal spirometry, %	40	17	<0.001
Airflow limitation			
Pre-BD FEV1/FVC <lln, %<="" td=""><td>23</td><td>10</td><td>0.008</td></lln,>	23	10	0.008
Post-BD FEV1/FVC <lln, %<="" td=""><td>27</td><td>7</td><td><0.001</td></lln,>	27	7	<0.001
FEV1 <lln, %<="" td=""><td>27</td><td>11</td><td>0.001</td></lln,>	27	11	0.001
FVC <lln, %<="" td=""><td>17</td><td>8</td><td>0.02</td></lln,>	17	8	0.02

Quantitative CT analysis for bronchiolitis obliterans in perinatally HIV-infected adolescents—comparison with controls and lung function data

Using semi-automated lung segmentation for CTs from 78 YLWH and I 6 uninfected youth, YLWH had greater:

- Mean lung density, mass
- Ventilation heterogeneity
- High- (HU >-810) and low-attenuation (HU <-950) regions

Low attenuation areas and ventilation heterogeneity correlated with lower FEV1/FVC (airflow limitation) \rightarrow obliterative bronchiolitis?

BUT greater % of high-attenuation than low-attenuation areas \rightarrow higher lung density may reflect inflammation

Phenotypes of CLD in YLWH remain poorly understood

Airway- predominant		Parenchymal, vascular
Obliterative/constrictive bronchiolitis	Post-TB lung disease	Interstitial diseases – fibrosis LIP
Bronchiectasis Asthma	Recurrent infections – TR bactorial	Pulmonary hypertension
Asthma/COPD overlap?	viral	

Endotypes

Anderson Lancet 2008;372:1107-19 Chung Curr Opin Allergy Clin Immunol 2023;23:199-204 Distinct from clinical phenotypes
 → Link clinical expression of disease to driving mechanisms of disease

'A subtype of disease defined functionally and pathologically by a molecular mechanism or by treatment response...'

Heterogeneity of CLD and genetic and environmental factors

- Multiomics: metabolomics, genetics, epigenetics, immunologic assays, transcriptomics, lipidomics
- \rightarrow Distinct endotypes may (co)-exist
- \rightarrow Associated with clinical features and reflect

differing molecular causes, responses to therapies

Little is known about endotypes of CLD among YLWH

Among PHIV adolescents, **early ART initiation** and **improved nutrition** were associated with better lung function PHIV school-age children who initiated **ART in infancy** had **lung function near population norms**

Pre-ART pneumonia, growth deficits and air pollution exposure \rightarrow lower lung function

Rylance PLoS One 2019; Hameiri-Bowen AIDS 2021; Attia JAIDS 2022

Original Investigation | Pulmonary Medicine

Effect of Once-Weekly Azithromycin vs Placebo in Children With HIV-Associated Chronic Lung Disease The BREATHE Randomized Clinical Trial

Randomized 347 youth with HIV-CLD to weekly azithromycin x48 weeks

- No difference in zFEVI
- exacerbations (12.1 vs 24.7/100 p-y)

Azithromycin resistance on NP swabs/ sputum (S.pneumo, S.aureus)

Preserved bacterial diversity; decreased H.flu and Moraxella \rightarrow improved lung function?

Ferrand JAMA Network Open 2020;3:e2028484, Abotsi ERJ Open Res 2021;8:00491-2021, Abotsi Microbiome 2023;11:29

THE JOURNAL OF Allergyand Clinical Immunology

Immune imbalance and activation are associated with lower lung function in youth with perinatally acquired HIV

Among 49 Kenyan and 188 US youth with PHIV

FEV1 % predicted was significantly lower among Kenyan compared to US youth

Higher CD8 and lower CD4/CD8 were associated with lower FEVI % predicted, even in the setting of CD4 preservation/reconstitution

Endothelial activation, innate immune activation, and inflammation are associated with airflow limitation and obstruction among adolescents with HIV

Among 50 Kenyan YLWH, biomarkers of endothelial activation, immune activation, and chronic inflammation were associated with lower post-BD zFEV_I/FVC \rightarrow potential mechanistic pathways

Individual biomarkers sVCAM-1, sICAM-1, sCD163, sTREM-1, CD4/CD8, SAA **Factors** representing endothelial and immune/monocyte activation

High prevalence of post-BD airflow obstruction (28%) and mosaic attenuation (48%), suggestive of **obliterative bronchiolitis phenotype** → Associated with **immune activation (sCD14) endotype**

Metabolomic profiling is emerging as a tool to identify signatures unique to lung diseases

Metabolic pathways have been implicated in heterogeneous CLD pathophysiology:

→ Pyrimidine, lipid, fatty acid metabolism, glycolysis, mitochondrial beta-oxidation and the TCA cycle Metabolomic profiling has NOT been performed among YLWH and CLD

Outline

Background

Chronic lung disease (CLD)

• HIV

Children and Adolescents

CLD phenotypes and endotypes in YLWH

Research at the Hope Center

Next steps and future directions

Summary

BREATHE II Study

PHENOTYPING AND ENDOTYPING:

IMAGING, BIOMARKERS, AND LONGITUDINAL SPIROMETRY IN YLWH AND HIV- YOUTH

Research Objectives

- Compare phenotypes, risk factors of CLD in YLWH and HIV- youth
 Baseline spirometry, chest CTs
- Determine whether HIV is associated with CLD and diminished growth of lung function over time
- Determine whether endotypes identified by immunological assays (chronic inflammation, immune activation and HIV severity) and metabolomic profiling are associated with increased risk of:
 - Prevalent CLD
 - Diminished lung function over time

Research Objectives

- Compare phenotypes, risk factors of CLD in YLWH and HIV- youth
 Baseline spirometry, chest CTs
- Determine whether HIV is associated with CLD and diminished growth of lung function over time
- Determine whether endotypes identified by immunological assays (chronic inflammation, immune activation and HIV severity) and metabolomic profiling are associated with increased risk of:
 - Prevalent CLD
 - Diminished lung function over time

Study Site & Population

165 YLWH and 170 HIV-uninfected youth with adequate quality spirometry enrolled July 2017 – December 2018

Inclusion criteria

- Age 10-19 yo
- YLWH in care at the Hope Center
- Uninfected youth from surrounding area in Nairobi

Exclusion criteria

- Acute respiratory infection
- Severe illness
- Recent TB diagnosis
- Pregnancy

Key Study Procedures

Pre- & post-BD spirometry - Baseline + 6, 12 & 24 (→48) mos - Global GLI ref eqns

HRCT in YLWH

- Inspiratory, expiratory
 - Clinical
- assessment
- Quantitative measures

Biomarker & metabolite analysis - Inflammation, immune imbalance/ activation, endothelial activation - CD4, CD8

- Metabolomic profiling

Ambient **PM2.5** - NASA satellites - Linked to home address - Accounts for temp/humidity at spirometry

Preliminary Results

Select baseline characteristics	YLWH (n=165)	HIV- (n=170)	p-value
Male, n (%)	93 (56)	64 (37)	0.001
Age, median (IQR)	16 (13, 18)	14 (12, 16)	<0.001
HIV-related variables			
Current ART, n (%)	165 (100)	-	
Duration of ART (years), median (IQR)	8 (2, 11)	-	
Current CD4 count (cells/µL), median (IQR)	576 (359, 787)	917 (707, 1104)	<0.001
Current CD4/CD8 ratio, median (IQR)	0.74 (0.37, 1.03)	1.45 (1.12, 1.83)	<0.001
Prior pneumonia, n (%)	54 (32)	40 (24)	0.08
Prior pulmonary TB, n (%)	21 (13)	I (I)	<0.001
BMI-for-age z-score, median (IQR)	-0.4 (-1.2, 0.2)	-0.1 (-0.8, 0.6)	0.008
Height-for-age z-score, median (IQR)	-1.2 (-1.8, -0.5)	-0.5 (-1.2, 0.1)	<0.001
Aggregate indoor biofuel burning (hrs/wk)	10 (3, 23)	I4 (4, 28)	0.003
Secondhand cigarette smoke exposure, n (%)	40 (24)	30 (18)	0.14
Ambient PM _{2.5} (PPM), median (IQR)	43.2 (26.I, 52.2)	48.5 (30.4, 56.8)	0.003
Any respiratory symptoms, n (%)	101 (61)	83 (49)	0.02
Cough	57 (34)	33 (19)	0.002

	YLWH	HIV-	Adjusted difference*
	mean z-score	e (95% CI)	difference (95% CI)
Pre-bronchodilator			
zFEV	-0.92 (-1.08, -0.76)	-0.74 (-0.87, -0.60)	-0.19 (-0.42, 0.03)
zFVC	-0.83 (-0.98, -0.68)	-0.64 (-0.77, -0.50)	-0.23 (-0.44, -0.02)
zFEV _I /FVC	-0.15 (-0.31, 0.01)	-0.15 (-0.29, 0.00)	0.01 (-0.23, 0.25)
Post-bronchodilator			
zFEV	-0.75 (-0.91, -0.59)	-0.54 (-0.68, -0.41)	-0.24 (-0.46, -0.02)
zFVC	-0.82 (-0.98, -0.67)	-0.62 (-0.77, -0.48)	-0.24 (-0.45, -0.02)
zFEV _I /FVC	0.14 (0.00, 0.29)	0.21 (0.08, 0.34)	-0.06 (-0.27, 0.16)

YLWH have significantly lower zFEV₁ and zFVC compared to HIV- youth

*linear regression models adjusted for age, sex, BMI-/height-for-age z-scores, inhaled exposures (secondhand smoke, hrs/wk biofuel burning, ambient PM_{2.5})

HIV is independently associated with any abnormal spirometry pattern and PRISm among youth

	YLWH	HIV-	Adjusted* relative risk
	n (%)		RR (95% CI)
Any abnormal pattern	40 (25)	29 (18)	I.63 (I.04, 2.56)
Pre-BD			
Airflow obstruction	8 (5)	10 (6)	
PRISm	31 (20)	19 (12)	2.06 (1.22, 3.50)
Post-BD			
Airflow obstruction	3 (2)	4 (3)	
PRISm	25 (17)	12 (8)	

*adjusted for age, sex, BMI/height-for-age z-score, inhaled exposures (secondhand smoke, hrs/wk biofuel burning, ambient PM2.5) in modified Poisson regression model with robust error variance

Abnormal spirometry, chest CT and respiratory symptoms among YLWH (*n*=152 with complete data)

CT Abnormalities (n=91)

Nodules, n=52 Mosaic attenuation, n=41 Bronchiectasis, n=16 Lymphadenopathy, n=15 Linear scars, n=14 Groundglass, n=9 Bronchial wall thickening, n=7 Consolidation, n=8 Emphysema, n=8

Abnormal Spirometry (n=40)

Pre-BD airflow obstruction, n=8 Fixed airflow obstruction, n=3 Pre-BD PRISm, n=31 Post-BD PRISm, n=25 Bronchodilator response, n=13

> Presence of Respiratory Symptoms (n=94)

Cough, n=55 Sputum production, n=34 Wheezing, n=35 Chest tightness, n=40 Breathlessness, n=14

Quantitative CT Metrics -> parametric response mapping

NORMAL

Voxels ABOVE -950 HU on inspiration Voxels ABOVE -856 HU on expiration **FUNCTIONAL LOW DENSITY AREA (fSAD)** Voxels ABOVE -950 HU on inspiration Voxels BELOW -856 HU on expiration **PERSISTENT LOW DENSITY AREA (Emph)** Voxels BELOW -950 HU on inspiration Voxels BELOW -856 HU on expiration **INSPIRATION HIGH DENSITY AREA (PD)** Voxels ABOVE -810 HU on inspiration

Quantitative CT metrics	Any abnormal spirometry (n=47)	Normal spirometry (n=92)	
	median (IQR)		p-value
Whole lung volume (expiratory)	2.18 (1.70, 2.71)	2.24 (1.86, 3.01)	<0.001
Mean expiratory HU	-655.31 (-691.57, -614.63)	-662.46 (-694.57, -623.61)	0.01
Whole lung volume (inspiratory)	2.93 (2.30, 3.53)	3.78 (3.05, 4.68)	<0.001
Mean inspiratory HU	-733.43 (-756.63, -698.61)	-760.66 (-778.24, -738.34)	<0.001
PRM - normal lung	53.05 (24.21, 66.92)	68.37 (45.64, 74.88)	<0.001
PRM - parenchymal disease (PD)	31.88 (21.03, 65.87)	19.07 (14.24, 31.82)	<0.001

Quantitative CT metrics but NOT qualitative findings differ by abnormal spirometry among YLWH

AmongYLWH but not HIV- youth, higher levels of - sCD14 - sICAM-I - sVCAM-1 (Factor 2) were associated with abnormal spirometry, including **PRISm**

	YLWH		HIV-	
Serum biomarkers	Adjusted* RR (95% CI)	p-value	Adjusted* RR (95% Cl)	p-value
Any abnormal spirometry pattern				
Factor I (IL-6, ET-1)	0.76 (0.56, 1.03)	0.08	0.96 (0.51, 1.81)	0.9
Factor 2 (sCD14, sICAM-1, sVCAM-1)	1.32 (1.03, 1.70)	0.03	0.90 (0.63, 1.30)	0.6
Factor 3 (CRP, SAA)	.3 (.04, .67)	0.03	l.86 (l.38, 2.50)	<0.001

*adjusted for age, sex, BMI/height-for-age z-score, inhaled exposures (secondhand smoke, hrs/wk biofuel burning, ambient PM2.5) in modified Poisson regression model with robust error variance AmongYLWH, distinct metabolomic profiles of - oxidative stress - pyrimidine metabolism are associated with respiratory abnormalities and low FEVI

Conclusions

HIV

Proportionally lower zFEV₁ and zFVC
Greater risk of abnormal spirometry, PRISm

 \rightarrow after accounting for age, sex, growth parameters and inhaled pollutants

Among YLWH: Substantial **heterogeneity and overlap** in manifestations of CLD; challenging to identify clinical subtypes

High density areas (**parenchymal disease**) on quantitative CT may be informative for identifying phenotypes of CLD Endotypes with **metabolic pathways** of **oxidative stress and pyrimidine metabolism** and **endothelial and immune activation** were associated with **respiratory abnormalities**

Outline

Background

Chronic lung disease (CLD)

• HIV

Children and Adolescents

CLD phenotypes and endotypes in YLWH

Research at the Hope Center

Next steps and future directions

Summary

Toward identifying phenotypes and endotypes...

Phenotyping

Personalized attenuation thresholds; additional quantitative chest CT analyses

Longitudinal lung function data analysis (groupbased trajectory modeling)

Endotyping

Additional proteomic, epigenetic, microbiome profiling

Outline

Background

Chronic lung disease (CLD)

• HIV

Children and Adolescents

CLD phenotypes and endotypes in YLWH

Research at the Hope Center

Next steps and future directions

Summary

In summary...

CLD is an important complication of HIV among youth
 Manifestations of CLD are heterogeneous and overlapping
 → challenging to identify clinical phenotypes and endotypes

Among **YLWH**: Obliterative bronchiolitis and CLD represented by areas of parenchymal disease may represent clinical phenotypes relevant in HIV Important **endotypes** of HIV-related CLD and impaired lung function may include:

- Immune/endothelial activation, inflammation
- Metabolomic pathways of oxidative stress and pyrimidine metabolism

Many Thanks to...

- Our participants, study team, colleagues and collaborators at the Coptic Hope Center for Infectious Diseases and University of Nairobi
- Drs. Kristina Crothers, Eoin West, Michael Chung, Greg Kicska, Elizabeth Maleche-Obimbo, Margaret Rosenfeld, Laura Ellington, Grace John-Stewart, Sameh Sakr, Sherry Eskander, Mary Nderitu
- Drs. Craig Galban, Chuck Hatt
- Drs. Bill Shearer, Denise Jacobson, Paige Williams, Claudia Crowell, Murli Purswani, Russ Van Dyke, Wendy Yu & PHACS

Funding and Support

NHLBI K23 HL129888 NHLBI R03 HL160251 U01 HD052102-13 (PHACS) F32 HL125031

CENTER FOR INFECTIOUS DISEASE RESEARCH INFECTIOUS DISEASE RESEARCH INSTITUTE SEATTLE CHILDREN'S UNIVERSITY OF HAWAI'I AT MÂNOA Pediatric HIV/AIDS A Study of the National In

R

Thomas Francis, Jr. Global Health Travel Fellowship ^{University of Washington} DEPARTMENT OF GLOBAL HEALTH

Division of Pulmonary & Critical Care Medicine Lakshminarayan Fellow Fund Endowment Grant

Thrasher Research Fund Medical research grants to improve the lives of children

Early Career Award

Declaration: No conflicts of interest

Questions?

eattia@uw.edu

@engiattia

