Champak Chatterjee

Champak Chatterjee, PhD. Assistant Professor of Chemistry
Ph.D. University of Illinois at Urbana-Champaign, 2005

(Synthetic Protein Chemistry, Chemical Biology, Biochemistry)

(206) 543-2349

Email: chatterjee@chem.washington.edu

Chatterjee group website

Research Interests

Chemical approaches to study protein modifications
The complexity of cellular processes in higher organisms is in stark contrast with the relatively few protein-coding genes (~21,000) in their cells. The chemical modification of proteins after they are assembled on ribosomes, termed protein post-translational modification (PTM), is an important process that adds rich diversity to protein function. We are broadly interested in understanding how chemical modifications affect protein structure and function. Our specific focus is on studying protein modification by small ubiquitin-like proteins. We combine the powerful tools of synthetic organic chemistry and molecular biology to generate specifically modified proteins that are subjected to biochemical and biophysical investigation. Students in our group gain expertise in the synthesis, purification, and characterization of small molecules and proteins.

Two current areas of research are histone protein modification by the small ubiquitin-like protein modifier, SUMO, and modification of Mycobacterium tuberculosis proteins by the prokaryotic ubiquitin-like protein, Pup. We believe that understanding how these proteins modify the functions of their targets will allow us to devise new ways to control gene function and bacterial infection.

Representative Publications

Smirnov, D.; Dhall, A.; Sivanesam, K.; Sharar, R.J.; Chatterjee, C.
Fluorescent probes reveal a minimal ligase recognition motif in the prokaryotic ubiquitin like protein from Mycobacterium tuberculosis. J. Am. Chem. Soc. 2013, http://dx.doi.org/10.1021/ja311376h

.

Meier, F.; Abeywardana, T.; Dhall, A.; Marotta, N.P.; Varkey, J.; Langen, R.; Chatterjee, C.; Pratt, M. R. Semisynthetic, Site-Specific Ubiquitin Modification of α-Synuclein Reveals Differential Effects on Aggregation. J. Am. Chem. Soc. 2012, 134, 5468–5471.


Dhall, A.; Chatterjee, C. Chemical approaches to understand the language of histone modifications ACS Chem. Biol. 2011, 6, 987–999.


Fierz, B.; Chatterjee, C.; McGinty, R.K.; Bar-Dagan, M.; Raleigh, D.P.; Muir, T.W.Histone H2B ubiuitylation disrupts local and higher-order chromatin compaction Nat. Chem. Biol. 2011, 7, 113–119.

 

Chatterjee, C.; McGinty, R.K.; Fierz, B.; Muir, T. W. "Disulfide-directed histone ubiquitylation reveals plasticity in hDot1L activation." Nat. Chem. Biol. 2010, doi:10.1038/nchembio.315.

 

McGinty, R.K.; Kohn, M.; Chatterjee, C.; Chiang, K.P; Pratt, M.R.; Muir, T.W. "Structure activity analysis of semisynthetic nucleosomes: Mechanistic insights of the stimulation of Dot1L by ubiquitylated histone H2B." ACS Chemical Biology 2009, 4, 258-268.

 

Levengood, M.R.; Kerwood, C.C.; Chatterjee, C.; van der Donk, W.A. "Investigations of the substrate specificity of lacticin 481 synthetase by using nonproteinogenic amino acids." Chembiochem 2009, 10, 911-919.

 

Patton, G.C.; Paul, M.; Cooper, L.E.; Chatterjee, C.; van der Donk, W.A. "The importance of the leader sequence for directing lanthionine formation in lacticin 481." Biochemistry 2008, 47, 7342-7351.

 

Furgerson Ihnken, L.A.; Chatterjee, C.; van der Donk, W.A. "In vitro reconstitution and substrate specificity of a lantibiotic protease." Biochemistry 2008, 47, 7352-7363.

 

 

More Publications ...

Awards & Activities

GRC Bioorganic Chemistry, Session Chair 2012


Royalty Research Fund 2012

 

2010 Blavatnik Award nominee from The Rockefeller University

 

2001Teacher Rated as Excellent, UIUC Center for Teaching Excellence

 

1999-2001 University of Illinois, Chemical Biology Fellowship

 

1998 IIT Bombay, silver medal (first in graduating class)

 

Site Map | Contact Us