Forrest Michael

Professor Forrest MichaelAssociate Professor of Chemistry
Ph.D. Harvard University, 2001

(Organic and Organometallic Chemistry)

(206) 543-6519
Email: michael@chem.washington.edu

 

Research Interests

The Michael group is interested in developing new methodologies for organic synthesis. Synthetic organic chemistry is a powerful tool for creating complex molecules for use in materials science, pharmaceuticals, and molecular biology. Our goal is to identify difficult transformations in synthetic organic chemistry and to design new methods to efficiently accomplish those transformations. Such an approach requires expertise in organic synthesis, physical organic chemistry and organometallic chemistry. Mechanistic studies will be an important part of these investigations since understanding the specific details of useful transformations will aid in the design of more advanced methods. Additionally, the design of efficient syntheses of interesting organic molecules will provide an important illustration of the usefulness and power of these newly developed methods. Specific examples of the types of reactions we are interested in are introduced below.

 

Amination of Unsaturated Hydrocarbons

The vast majority of biologically active compounds contain nitrogen. Therefore, general methods for the direct, efficient incorporation of nitrogen-containing functional groups are particularly important. The Michael group has recently disclosed a highly effective catalyst for the direct addition of N-H bonds to unactivated alkenes (hydroamination). This catalyst can be used for the selective construction of medicinally important heterocycles. Further research in this area is directed towards other methods for amination and diamination of carbon-carbon double and triple bonds, as well as the selective introduction of more complex nitrogen-containing functional groups, such as nitroso and nitro groups. 

 

Organic Catalysts

The potential toxicity of metal-based catalysts and reagents in organic chemistry is a significant drawback when using these compounds for the synthesis of biologically active molecules, especially pharmaceuticals. In this context, the Michael group is also interested in expanding the types of reactivity that can be catalyzed by purely organic compounds, particularly Brønsted acid catalysis and oxidation/reduction chemistry.

 

Stereocontrol

One of the biggest challenges in developing new methods for organic synthesis is controlling the relative and absolute stereochemistry of the products. Studying and optimizing the factors that influence the regioselectivity, diastereoselectivity and enantioselectivity of any new catalytic process is a primary goal of this research.

Representative Publications

Rosewall, C. F.; Sibbald, P. A.; Liskin, D. V.; Michael, F. E. "Palladium Catalyzed Arylamination of Alkenes Promoted by N-Fluorobenzenesulfonimide via C-H Activation of Arenes" J. Am. Chem. Soc. 2009, 131, 9488-9489.

 

Sibbald, P. A.; Michael, F. E. "Palladium-Catalyzed Diamination of Unactivated Alkenes Using N-fluorobenzenesulfonimide as a Source of Electrophilic Nitrogen" Org. Lett. 2009, 11, 1147-1149.

 

Cochran, B. M.; Michael, F. E. "Metal-free Oxidative Cyclization of Urea-Tethered Alkenes with Hypervalent Iodine" Org. Lett. 2008, 10, 5039-5042.

 

Cochran, B. M.; Michael, F. E. "Synthesis of 2,6-Disubstituted Piperazines by a Diastereoselective Palladium-Catalyzed Hydroamination Reaction" Org. Lett. 2008, 9, 329-32.

 

Cochran, B. M.; Michael, F. E. "Mechanistic Studies of a Palladium Catalyzed Intramolecular Hydroamination of Unactivated Alkenes: Protonolysis of a Stable Palladium Alkyl Complex is the Turnover-limiting Step" J. Am. Chem. Soc. 2008, 130, 2786-2792.

 

Hoover, J. M.; DiPasquale, A.; Mayer, J. M.; Michael, F. E. “Synthesis and Reactivity of a RuIII bis(anilide) Dimer by Oxidative Addition of an N,N’-disubstituted Hydrazine” Organometallics 2007, 26, 3397-3405.

 

Michael, F. E.; Cochran, B. M. “Room-Temperature Palladium-Catalyzed Intramolecular Hydroamination of Unactivated Alkenes” J. Am. Chem. Soc. 2006, 128, 4246-4248.


More Publications ...

Awards & Activities

NSF CAREER Award (2008)

 

Thieme Journal Award (2006)

 

National Institutes of Health Post-Doctoral Fellowship (University of California, Berkeley, 2002-2004)

 

NSF Graduate Fellowship (1995-1998)

More Awards and Activities

Site Map | Contact Us