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Abstract

We present a finite volume method that is applicable to general hyperbolic PDEs, including
non-conservative and spatially varying systems. The method can be extended to arbitrarily
high order of accuracy and allows a well-balanced implementation for capturing solutions of
balance laws near steady state. This well-balancing is achieved through the f -wave Riemann
solver and a novel wave-slope WENO reconstruction procedure. The spatial discretization, like
that of the well-known Clawpack software, is based on solving Riemann problems and calculat-
ing fluctuations (not fluxes). Our implementation employs weighted essentially non-oscillatory
reconstruction in space and strong stability preserving Runge-Kutta integration in time. We
demonstrate the wide applicability and advantageous properties of the method through numer-
ical examples, including problems in non-conservative form, problems with spatially varying
fluxes, and problems involving near-equilibrium solutions of balance laws.

1 Introduction

Many important physical phenomena are governed by hyperbolic systems of conservation laws. In
one space dimension the standard conservation law has the form

qt + f(q)x = 0, (1)

where the components of q ∈ Rm are conserved quantities and the components of f : Rm×Rm → Rm

are the corresponding fluxes. Very many numerical methods have been developed for the solution
of (1); some of the most successful are the high resolution Godunov-type methods based on the
∗King Abdullah University of Science and Technology, Box 4700, Thuwal, Saudi Arabia, 23955-6900.

(david.ketcheson@kaust.edu.sa)
†King Abdullah University of Science and Technology, Box 4700, Thuwal, Saudi Arabia, 23955-6900.

(matteo.parsani@kaust.edu.sa)
‡Department of Applied Mathematics, University of Washington, Box 352420, Seattle, WA 98195-2420.

(rjl@uw.edu)

1



use of Riemann solvers and nonlinear limiters. These and other methods are generally based on
flux-differencing and make explicit use of the flux function f .

Herein we also consider the more general quasilinear variable-coefficient hyperbolic system

κ(x)qt +A(q, x, t)qx = 0, (2)

where A : Rm×R×R→ Rm×m is diagonalizable with real eigenvalues. Wave-propagation methods
of up to second-order accuracy have been developed for such systems in, e.g. [11, 14]. These
methods are based on wave-propagation Riemann solvers, which compute fluctuations, (i.e. traveling
discontinuities) rather than fluxes and thus can be applied to the general system (2) just as easily
as to the conservation law (1).

Second-order methods may often be the best choice in terms of a balance between computa-
tional cost and desired resolution, especially for problems with solutions dominated by shocks or
other discontinuities with relatively simple structures between these discontinuities. For problems
containing complicated smooth solution structures, where the accurate resolution of small scales is
required (e.g. simulation of compressible turbulence, computational aeroacoustics (CAA), compu-
tational electromagnetism (CEM), turbulent combustion etc.), schemes with higher order accuracy
are desirable.

The purpose of this work is to present a numerical method that combines the advantages of
wave-propagation solvers with high order accuracy. The basic discretization approach was presented
already in [8]; here, we give a more detailed presentation and demonstrate the wide applicability
of the method. The new method combines the notions of wave propagation ([11, 12]) and the
method of lines, and can in principle be extended to arbitrarily high order accuracy by the use of
high order accurate spatial reconstructions and high order accurate ordinary differential equation
(ODE) solvers. The implementation presented here is based on the fifth-order accurate weighted
essentially non-oscillatory (WENO) reconstruction and a fourth-order strong-stability-preserving
Runge-Kutta (RK) scheme, and can be applied to system (2) as long as the correct structure of
the Riemann solution for the system is understood. We restrict our attention to problems in one
or two dimensions, although the method may be extended in a straightforward manner to higher
dimensions.

An alternative approach to high order discretization of hyperbolic PDEs (the adaptive high
order derivatives, or ADER, method) has been developed by Titarev & Toro [20] and subsequent
authors. That approach uses the Cauchy-Kovalewski procedure and has the advantage of leading
to one-step time discretization. The method of lines approach used in the present work seems
more straightforward and allows manipulation of the method properties by the use of different time
integrators, but requires the evaluation of multiple stages per time step.

A similar class of methods, applicable to non-conservative hyperbolic systems, has been devel-
oped by Castro, Gallardo, Pares, and their coauthors; see, e.g. [2]. Those methods also use WENO
reconstruction and Runge-Kutta time stepping in conjunction with Riemann solvers, and lead to a
discretization with a form similar similar to that presented here and in [8]. Those methods have
recently been combined with the ADER approach; see [3]. The present method differs in the ap-
proach to reconstruction and the kind of Riemann solvers used. These differences result in some

2



potential advantages: our method also handles system (2) with capacity function κ and it can make
use of f -wave Riemann solvers [1] as well as wave-slope reconstruction to ensure conservation or
well-balancing and achieve high order convergence even for some problems with discontinuous co-
efficients. Using our approach, it is not necessary to artificially enlarge a system of balance laws in
order to obtain a well-balanced scheme. Finally, there is a freely available implementation of the
method that uses a framework familiar to many practitioners of hyperbolic PDEs.

The methods described in this paper are implemented in the software package SharpClaw, which
is freely available on the web at http://www.clawpack.org.

SharpClaw employs the same interface that is used in Clawpack [12] for problem specification
and setup, as well as for the necessary Riemann solvers. This makes it simple to apply SharpClaw
to a problem that has been set up in Clawpack.

The paper is organized as follows. In Section 2.2, we present Godunov’s method for linear
hyperbolic PDEs in wave propagation form [12]. This method is extended to high order in Section 2.3
by introducing a high order reconstruction based on cell averages. Generalization to nonlinear
hyperbolic systems is presented in Section 2.4. Further extensions and details of the method are
presented in the remainder of Section 2. Numerical examples, including application to acoustics,
elasticity, and shallow water waves, are presented in Section 3.

2 Semi-discrete wave-propagation

The wave-propagation algorithm was first introduced by LeVeque [11] in 1997 in the framework
of high resolution finite volume methods for solving hyperbolic systems of equations. The scheme
is conservative, second-order accurate in smooth regions, and captures shocks without introducing
spurious oscillations. In this section, we extend the wave-propagation algorithm to arbitrarily
high order of accuracy through use of high order reconstructions and time marching schemes. For
simplicity, we focus on the one dimensional (1D) scheme and then briefly describe the extension to
two dimensions (2D).

2.1 Riemann Problems and Notation

The notation for Riemann solutions used in this paper comes primarily from [12], and is motivated
by consideration of the linear hyperbolic system

qt +Aqx = 0. (3)

Here q ∈ Rm and A ∈ Rm×m. System (3) is said to be hyperbolic if A is diagonalizable with real
eigenvalues; we will henceforth assume this to be the case. Let sp and rp for 1 ≤ p ≤ m denote
the eigenvalues and the corresponding right eigenvectors of A with the eigenvalues ordered so that
s1 ≤ s2 ≤ . . . ≤ sm.
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Figure 1: The wave propagation solution of the Riemann problem.

Consider the Riemann problem consisting of (3) together with initial data

q(x, 0) =
{
ql x < 0
qr x > 0

(4)

The solution for t > 0 consists of m discontinuities, the pth one proportional to rp and moving at
speed sp. They can be obtained by decomposing the difference qr − ql in terms of the eigenvectors
rp:

qr − ql =
∑
p

αprp =
∑
p

Wp. (5)

We refer to the vectors Wp as waves. Each wave is a jump discontinuity along the ray x = spt in
phase space. The solution is pictured in Figure 1 for m = 3. For brevity, we will sometimes refer
to the Riemann problem with initial left state ql and initial right state qr as the Riemann problem
with initial states (ql, qr).

In a finite volume method, it is useful to define notation for the net effect of all left- or right-going
waves:

A−∆q ≡
m∑
p=1

(sp)−Wp (6a)

A+∆q ≡
m∑
p=1

(sp)+Wp. (6b)
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Here and throughout, (x)± denotes the positive or negative part of x:

(x)− = min(x, 0) (x)+ = max(x, 0).

Note that the symbols A±∆q, referred to as fluctuations, should be interpreted as single entities
that represent the net effect of all waves travelling to the right or left. The notation is motivated by
the case of a constant coefficient linear system (3), in which case A±∆q = A±(qr − ql), where A−
(respectively A+) is the matrix obtained by setting all postive (respectively negative) eigenvalues
of A to zero. See [11] or [12] for more details.

The notation for waves and fluctuations defined in (5) and (6) can also be used to describe
numerical solutions of Riemann problems for nonlinear systems if the numerical solver approximates
the solution by a series of propagating jump discontinuities, which is very often the case. Because
the approximate Riemann solution for a nonlinear system depends not only on the difference qr− ql
but on the values of the states, we will sometimes employ for clarity the notation Wp(ql, qr) to
denote the pth wave in the solution of the Riemann problem with initial states (ql, qr).

2.2 First-order Godunov’s method

Consider the constant-coefficient linear system in one dimension (3). Taking a finite volume ap-
proach, we define the cell averages (i.e. the solution variables)

Qi(t) =
1

∆x

∫ x
i+1

2

x
i− 1

2

q(x, t)dx,

where the index i and the quantity ∆x denote the cell index and the cell size, respectively. To solve
the linear system (3), we initially approximate the solution q(x, t) by these cell averages; that is, at
t = t0 we define the piecewise-constant function

q̃(x, t0) = Qi for x ∈ (xi− 1
2
, xi+ 1

2
). (7)

The linear system (3) with initial data q̃ consists locally of a series of Riemann problems, one at each
interface xi− 1

2
. The Riemann problem at xi− 1

2
consists of (3) with the piecewise constant initial

data

q(x, 0) =

{
Qi−1 x < xi− 1

2

Qi x > xi− 1
2
.

As discussed above, the solution of the Riemann problem is expressed as a set of waves obtained by
decomposing the jump in Q in terms of the eigenvectors of A:

Qi −Qi−1 =
∑
p

αp
i− 1

2

rp
i− 1

2

=
∑
p

Wp(Qi−1, Qi). (8)
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Figure 2: Time evolution of the reconstructed solution q̃ in cell i.

Let q̃(x, t0 + ∆t) denote the exact evolution of q̃ after a time increment ∆t. If we take ∆t small
enough that the waves from adjacent interfaces do not pass through more than one cell, then we
can integrate (3) over [xi− 1

2
, xi+ 1

2
]× [0,∆t] and divide by ∆x to obtain

Qi(t0 + ∆t)−Qi(t0) = − 1
∆x

∫ x
i+1

2

x
i− 1

2

A q̃x(x, t0 + ∆t)dx. (9)

Here q̃x should be understood in the sense of distributions.
We can split the integral above into three parts, representing the Riemann fans from the two

interfaces, and the remaining piece:∫ x
i+1

2

x
i− 1

2

Aq̃xdx =
∫ x

i− 1
2

+sR∆t

x
i− 1

2

Aq̃xdx+
∫ x

i+1
2

x
i+1

2
+sL∆t

Aq̃xdx+
∫ x

i+1
2

+sL∆t

x
i− 1

2
+sR∆t

Aq̃xdx. (10)

The relevant regions are depicted in Figure 2. Here we have defined sL = min(s1
i+ 1

2

, 0) and sR =

max(sm
i− 1

2

, 0). The third integral in (10) vanishes because q̃(x,∆t) is constant outside the Riemann
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fans, by the definition (7). Hence (10) reduces to∫ x
i+1

2

x
i− 1

2

Aq̃xdx = ∆t
m∑
p=1

(
sp
i− 1

2

)+

Wp

i− 1
2

+ ∆t
m∑
p=1

(
sp
i+ 1

2

)−
Wp

i+ 1
2

(11a)

= ∆t
(
A+∆Qi− 1

2
+A−∆Qi+ 1

2

)
, (11b)

where the fluctuations A−∆Qi+ 1
2
and A+∆Qi− 1

2
are defined by

A−∆Qi+ 1
2
≡

m∑
p=1

(
sp
i+ 1

2

)−
Wp

i+ 1
2

, Wp

i+ 1
2

≡ Wp(Qi, Qi+1) (12a)

A+∆Qi− 1
2
≡

m∑
p=1

(
sp
i− 1

2

)+

Wp

i− 1
2

, Wp

i− 1
2

≡ Wp(Qi−1, Qi). (12b)

Note again that the fluctuations A+∆Qi− 1
2
and A−∆Qi+ 1

2
are motivated by the idea of a matrix-

vector product but should be interpreted as single entities that represent the net effect of all waves
travelling to the right or left. The upper-case Q in the fluctuations is meant to emphasize that they
are based on differences of cell averages. For instance, the fluctuation A+∆Qi− 1

2
corresponds to the

effect of right-going waves from the Riemann problem with initial states (Qi−1, Qi).
Substituting (11b) into (9), we obtain the scheme

Qn+1
i −Qni = −∆t

∆x

(
A+∆Qi− 1

2
+A−∆Qi+ 1

2

)
.

Dividing by ∆t and taking the limit as ∆t approaches zero, we obtain the semi-discrete wave-
propagation form of the (first-order) Godunov’s scheme

∂Qi
∂t

= − 1
∆x

(
A+∆Qi− 1

2
+A−∆Qi+ 1

2

)
. (13)

Equation (13) constitutes a linear system of ordinary differential equations (ODEs) that may be
integrated, for instance, with a Runge-Kutta method. It is clear from the derivation that this
scheme reduces to the corresponding flux-differencing scheme when applied to systems written in
conservation form, e.g. system (1). The advantage of the proposed scheme over flux-differencing
schemes lies in the ability to solve systems which are not in conservation form, e.g. the general
quasilinear variable-coefficient hyperbolic system (2). Since systems of this form generally cannot
be rewritten in terms of a flux function, fluctuations are calculated in terms of the decomposition
(10).

2.3 Extension to higher order

The method of the previous section is only first-order accurate in space. In order to improve the
spatial accuracy, we replace the piecewise-constant approximation (7) by a piecewise-polynomial
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approximation that is accurate to order p in regions where the solution is smooth:

q̃(x, t0) = q̃i(x) for x ∈ (xi− 1
2
, xi+ 1

2
), (14)

where
q̃i(x) = q(x, t0) +O(∆xp+1).

Integration of Aq̃x over [xi− 1
2
, xi+ 1

2
] again yields (10), but now the third integral is non-zero in

general, since q̃ is not constant outside the Riemann fans. Define

qR
i− 1

2

≡ lim
x→x+

i− 1
2

q̃i(xi− 1
2
) qL

i+ 1
2

≡ lim
x→x−

i+1
2

q̃i(xi+ 1
2
), (15)

where superscripts L and R refer respectively to the left and the right state of the interface consid-
ered. Then in place of (11), we now obtain∫ x

i+1
2

x
i− 1

2

Aq̃xdx = ∆t
m∑
p=1

(
sp
i− 1

2

)+

Wp

i− 1
2

+ ∆t
m∑
p=1

(
sp
i+ 1

2

)−
Wp

i+ 1
2

+
∫ x

i+1
2

+sL∆t

x
i− 1

2
+sR∆t

Aq̃xdx (16a)

= ∆t
(
A+∆qi− 1

2
+A−∆qi+ 1

2

)
+A(qL

i+ 1
2

− qR
i− 1

2

). (16b)

The resulting fully-discrete scheme is thus

Qn+1
i −Qni = −∆t

∆x

(
A+∆qi− 1

2
+A−∆qi+ 1

2
+A(qL

i+ 1
2

− qR
i− 1

2

)
)
.

We use the notation A±∆q instead of A±∆Q because the states in the Riemann problems are not
the cell averages, but rather the reconstructed interface values. In other words, the fluctuations at
xi− 1

2
are defined by

A±∆qi− 1
2

=
m∑
p=1

(
sp(qL

i− 1
2

, qR
i− 1

2

)
)±
Wp(qL

i− 1
2

, qR
i− 1

2

).

For instance, the fluctuation A+∆qi− 1
2
corresponds to the effect of right-going waves from the

Riemann problem with initial states (qL
i− 1

2

, qR
i− 1

2

). Moreover, we can view the term A(qL
i+ 1

2

− qR
i− 1

2

)
as the sum of both the left- and right-going fluctuations resulting from a Riemann problem with
initial states (qR

i− 1
2

, qL
i+ 1

2

). It is natural to denote this term, which we refer to as a total fluctuation,
by A∆qi:

A∆qi =
m∑
p=1

(
sp(qR

i− 1
2

, qL
i+ 1

2

)
)±
Wp(qR

i− 1
2

, qL
i+ 1

2

).

Dividing by ∆t and taking the limit as ∆t approaches zero, we obtain the semi-discrete scheme

∂Qi
∂t

= − 1
∆x

(
A+∆qi− 1

2
+A−∆qi+ 1

2
+A∆qi

)
. (17)
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2.4 Nonlinear systems

Next we generalize the method to solve one-dimensional nonlinear hyperbolic systems:

qt +A(q, x)qx = 0. (18)

We again assume that A is a constant function of x within each cell, so we can write A(q, x) =
Ai(q). In the special case that A is the Jacobian matrix of some function f , (18) corresponds
to the conservation law (1). Our method can be applied to the general system (18) as long as
the physically meaningful solution to the Riemann problem can be approximated. We assume the
Riemann problem solution at xi− 1

2
is computed or approximated as consisting of discontinuities

(waves) Wp

i− 1
2

propagating at speeds sp
i− 1

2

, as is the case for any linearized Riemann solver, and
often for other approximate solvers. Then the scheme is given by

∂Qi
∂t

= − 1
∆x

A+∆qi− 1
2

+A−∆qi+ 1
2

+
∫ x

i+1
2

x
i− 1

2

Ai(q̃) q̃xdx

 . (19)

In general, the integral in (19) must be evaluated by quadrature; however, for the conservative
system (1), the integral can be evaluated exactly, and is given by∫ x

i+1
2

x
i− 1

2

Ai(q̃) q̃xdx = f(qL
i+ 1

2

)− f(qR
i− 1

2

). (20)

If the fluctuations are computed using a Roe solver or some other conservative wave-propagation
Riemann solver, then the flux difference appearing in (20) is equal to the sum of fluctuations from
a fictitious ‘internal’ Riemann problem for the current cell i, just as in the linear case above:

f(qL
i+ 1

2

)− f(qR
i− 1

2

) = A+∆qi +A−∆qi = A∆qi. (21)

Specifically, the fluctuations A±∆qi are those resulting from the Riemann problem with initial states
(qR
i− 1

2

, qL
i+ 1

2

). Then we can write (19) also as

∂Qi
∂t

= − 1
∆x

(
A−∆qi+ 1

2
+A+∆qi− 1

2
+A∆qi

)
. (22)

Note that, for the conservative system (1), if a Roe solver or an f -wave solver (see Section 2.6)
is used, then the fluctuations are equal to the flux differences

A−∆qi− 1
2

= f̂i− 1
2
− f(qL

i− 1
2

) (23)

A+∆qi− 1
2

= f(qR
i− 1

2

)− f̂i− 1
2
, (24)

where f̂i− 1
2
is the numerical flux at xi− 1

2
. Thus (22) is equivalent to the traditional flux-differencing

method
∂Qi
∂t

= − 1
∆x

(
f̂i+ 1

2
− f̂i− 1

2

)
. (25)

In particular, the scheme is conservative in this case.
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2.5 Capacity-form differencing

In many applications the system of conservation laws takes the form

κ(x)qt + f(q)x = 0, (26)

in one space dimension, or
κ(x, y)qt + f(q)x + g(q)y = 0, (27)

in two dimensions, where κ is a given function of space and is usually indicated as capacity function
(see [11]). Systems like (26) and (27) arise naturally in the derivation of a conservation law, where
the flux of a quantity is naturally defined in terms of one variable q, whereas it is a different quantity
κq that is conserved. For instance, for the flow in a porous media, κ would be the porosity. Note
that a capacity function can also appear in systems that are not in conservation form, e.g. the
quasilinear system (2).

Several approaches can be used to reduce such a system to a more familiar conservation law.
One natural approach is the capacity-form differencing [11],

∂Qi
∂t

= − 1
κi∆x

(
A+∆qi− 1

2
+A−∆qi+ 1

2
+A∆qi

)
, (28)

where κi is the capacity of the ith cell. This is a simple extension of (17) or (22) which ensures that∑
κiQi is conserved (except possibly at the boundaries) and yet allows the Riemann solution to be

computed based on q as in the case κ = 1.

2.6 f-wave Riemann solvers

For application to conservation laws, it is desirable to ensure that the wave-propagation discretiza-
tion is conservative. This can easily be accomplished by using an f -wave Riemann solver [1]. Use of
f -wave solvers is also useful for problems with spatially varying flux function, as well as problems
involving balance laws near steady state.

The idea of the f -wave splitting for (1) is to decompose the flux difference f(qr) − f(ql) into
waves rather than the q-difference used in (8), i.e. we decompose the flux difference as a linear
combination of the right eigenvectors rp of some jacobian:

f(qr)− f(ql) =
∑
p

βprp =
∑
p

Zp(ql, qr). (29)

Note that the f -waves have the dimensions of a q increment multiplied by the wave speed.
The fluctuations are then defined as

A−∆q ≡
∑
p:sp<0

Zp(ql, qr) A+∆q ≡
∑
p:sp>0

Zp(ql, qr)
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Note that the total fluctuation in cell i is given simply by

A∆qi = f
(
qL
i+ 1

2

)
− f

(
qR
i− 1

2

)
.

An advantage of particular interest is the possibility to include source terms directly into the
f -wave decomposition. In fact, for balance laws that include source terms,

qt + f(q)x = ψ(q, x),

one can easily extend this algorithm by first discretizing the source term to obtain values Ψi− 1
2
at

the cell interfaces and then compute the waves Zp
i− 1

2

by splitting

f(qr)− f(ql)−∆xΨ(ql, qr, x) =
∑
p

βprp =
∑
p

Zp(ql, qr). (30)

Here Ψ(ql, qr, x) is some suitable average of ψ(q, x), between the neighboring states. In Bale et
al. [1], it has been shown that for the second-order FV wave-propagation scheme implemented in
Clawpack, the f -wave approach is very useful for handling source terms, especially in cases where
the solution is close to a steady state because it leads to a well-balanced scheme. However, for our
high order wave-propagation scheme, application of the f -wave algorithm with componentwise or
characteristic-wise reconstruction (which take no account of the source term) does not lead to a
method that is well-balanced, even though the source term is accounted for in the Riemann solves.
This is because the reconstruction has already introduced variation in the solution.

In order to get a high-order well-balanced scheme, the f -wave Riemann solver in combination
with a wave-slope reconstruction approach is used. This reconstruction is presented in the next
section.

2.7 Reconstruction

The reconstruction (14) should be performed in a manner that yields high order accuracy but
avoids spurious oscillations near discontinuities. For this purpose, we use weighted essentially non-
oscillatory (WENO) reconstruction [19]. The spatial accuracy of the method will in general be equal
to that of the reconstruction. In the present work we employ fifth-order WENO reconstruction.

For systems of equations, the simplest approach to reconstruction is component-wise recon-
struction, which consists of simply applying the scalar reconstruction approach to each element of
q. A more sophisticated approach is characteristic-wise reconstruction, in which an eigendecom-
position of q is performed, followed by reconstruction of each eigencomponent. For problems with
spatially-varying coefficients, even the characteristic-wise reconstruction may not be satisfying, since
it involves comparing coefficients of eigenvectors whose direction in state space varies from one cell
to the next. In Clawpack, an alternative kind of TVD limiting known as wave limiting has been
implemented and shown to be effective for such problems.
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2.7.1 Wave-slope reconstruction

In order to implement a wave-type WENO limiter, we rewrite the WENO reconstruction in terms
of ratios of differences in Q; i.e. we write

qR
i− 1

2

= Qi − φ(θi− 1
2
,2−k, . . . , θi− 1

2
,k−1)∆Qi− 1

2

qL
i+ 1

2

= Qi + φ(θi+ 1
2
,1−k, . . . , θi+ 1

2
,k−2)∆Qi− 1

2
,

where

θi− 1
2
,j =

∆Qi− 1
2

+j

∆Qi− 1
2

and φ is a nonlinear function defined implicitly by the WENO reconstruction procedure. The
following reconstruction method, which we refer to as wave-slope reconstruction, accounts for spatial
variation in the coefficients of the hyperbolic system. At each interface xi− 1

2
, a Riemann problem

is solved using the adjacent cell average values Qi−1, Qi as left and right states, just as in the
implementation of Godunov’s method. This results in a set of waves Wp

i− 1
2

. The reconstructed
values are given by

qL
i− 1

2

= Qi−1 +
∑
p

φp
i− 1

2

(θi+ 1
2
,1−k, . . . , θi+ 1

2
,k−2)Wp

i− 1
2

qR
i− 1

2

= Qi −
∑
p

φp
i− 1

2

(θi− 1
2
,2−k, . . . , θi− 1

2
,k−1)Wp

i− 1
2

,

where

θp
i− 1

2

=
Wp

I− 1
2

· Wp

i− 1
2

Wp

i− 1
2

· Wp

i− 1
2

.

2.7.2 f-wave-slope reconstruction

Wave-slope reconstruction can also be performed using an f -wave Riemann solver. This is useful
for computing near-equilibrium solutions of balance laws, since application of (30) will lead to a
constant reconstructed function in regions where source terms and hyperbolic terms are balanced.
We refer to this as f -wave-slope reconstruction; the algorithm is identical to that outlined above
except that, since the f -waves have the form of a q increment multiplied by the wave speed, the
wavesWp are computed asWp = Zp/sp. Particular attention must be given to the special situations
of sp = 0 or sp very close to machine zero.

2.8 Time integration

The semi-discrete scheme can be integrated in time using any initial-value ODE solver. Herein we
use the ten-stage fourth-order strong-stability-preserving Runge-Kutta scheme of [6]. This method
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has a large stability region and a large SSP coefficient, allowing use of a large CFL number in
practical computations. In all numerical examples of the next section, a CFL number of 2.45 is
used.

To summarize, the full semi-discrete algorithm used in each Runge-Kutta stage is as follows.

0. (only if using wave-slope reconstruction) Solve the Riemann problem at each interface xi− 1
2

using the adjacent cell average values Qi−1, Qi as left and right states.

1. Compute the reconstructed piecewise function q̃, and in particular the states qR
i− 1

2

, qL
i+ 1

2

in
each cell, using component-wise, characteristic-wise, or wave-slope reconstruction.

2. At each interface xi− 1
2
, compute the fluctuations A+∆qi− 1

2
and A−∆qi− 1

2
by solving the

Riemann problem with initial states (qL
i− 1

2

, qR
i− 1

2

).

3. Over each cell, compute the integral
∫
A(q̃)q̃xdx. For conservative systems this is just the

total fluctuation A∆qi.

4. Compute ∂Q/∂t using the semi-discrete scheme (19).

Note again that, for conservative systems, the quadrature in step 3 requires nothing more than
evaluating and differencing the fluxes.

2.9 Extension to Two Dimensions

In this section, we extend the numerical wave propagation method to two dimensions using a simple
dimension-by-dimension approach. The method is applicable to systems of the form

qt +A(q, x, y)qx +B(q, x, y)qy = 0 (31)

on uniform Cartesian grids.
The 2D analog of the semi-discrete scheme (22) is

∂Qij
∂t

= − 1
∆x∆y

(
A−∆qi+ 1

2
,j +A+∆qi− 1

2
,j +A∆qi,j

+B−∆qi,j+ 1
2

+ B+∆qi,j− 1
2

+ B∆qi,j
)
.

(32)

For the method to be high order accurate, the fluctuation terms like A−∆qi+ 1
2
,j should involve

integrals over cell edges, while the total fluctuation terms like A∆qi,j should involve integrals over
cell areas. This can be achieved by forming a genuinely multidimensional reconstruction of q and
using, e.g., Gauss quadrature. An implementation following this approach exists in the SharpClaw
software. For nonlinear problems containing shocks, the genuinely multidimensional reconstruction
has been found to be inefficient (at least for some simple test problems), as it typically yields only
a small improvement in accuracy over the dimension-by-dimension scheme given below, but has
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a much greater computational cost on the same mesh. Recently, this result has been reported in
Zhang et al. [21]. In the latter work, it has been shown that for high precision simulation of smooth
flows, a genuinely multidimensional reconstruction could take less CPU time to reach the same error
threshold than the dimension-by-dimension scheme. The reason is that they are both high order
accurate for linear systems, but the first scheme is only second-order accurate for nonlinear systems,
whereas the second one is still high order accurate. A careful comparison of the two approaches is
left for future work. Indeed, for problems containing both shocks and rich smooth flow structures
(e.g. shocks interactions with turbulent boundary layer or shock interaction with vortices), lower
order methods usually are too dissipative and high order stable methods such as WENO could
represent an efficient alternative.

We now describe the dimension-by-dimension scheme for a single Runge-Kutta stage. We first
reconstruct piecewise-polynomial functions q̃j(x) along each row of the grid and q̃i(y) along each
column, by applying a 1D reconstruction procedure to each slice. We thus obtain reconstructed
values

q̃Rj (xi− 1
2
) ≈ q(xi− 1

2
, yj) (33a)

q̃Lj (xi+ 1
2
) ≈ q(xi+ 1

2
, yj) (33b)

q̃Ri (yi− 1
2
) ≈ q(xi, yi− 1

2
) (33c)

q̃Li (yi+ 1
2
) ≈ q(xi, yi+ 1

2
) (33d)

for each cell i, j. The fluctuation terms in (32) are determined by solving Riemann problems between
the appropriate reconstructed values; for instance B−∆qi,j+ 1

2
is determined by solving a Riemann

problem in the y-direction with initial states (qL
i,j+ 1

2

, qR
i,j+ 1

2

). In the case of conservative systems
or piecewise-constant coefficients, the total fluctuation terms A∆qi,j and B∆qi,j can be similarly
determined by summing the left- and right-going fluctuations of an appropriate Riemann problem.
Thus, for instance, B∆qi,j is determined by solving Riemann problem in the y-direction with initial
states (qR

i,j− 1
2

, qL
i,j+ 1

2

).

3 Numerical applications

In this section we present results of numerical tests using the wave propagation methods just de-
scribed. The examples included are chosen to emphasize the advantages of the wave propagation
approach, as reviewed above. We make some comparisons with the well-known second-order wave
propagation code Clawpack [13, 12]).
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3.1 Acoustics

In this section, the high-order wave propagation algorithm is applied to the 1D equations of linear
acoustics in piecewise homogeneous materials:

pt +K(x, y)(ux + vy) = 0 (34a)

ut +
1

ρ(x, y)
px = 0 (34b)

vt +
1

ρ(x, y)
py = 0. (34c)

Here p is the pressure and u, v are the x- and y-velocities, respectively. The coefficients ρ and K,
which vary in space, are the density and bulk modulus of the medium. We will also refer to the
sound speed c =

√
K/ρ. Notice that in general since ρ varies in space, the last two equations above

are not in conservation form. This test case demonstrates that the proposed approach is able to
solve hyperbolic system of equations written in nonconservative form. Of course, this system can
be written in conservative form as follows:

εt − (ux + vy) = 0 (35a)
ρ(x, y)ut − (K(x, y)ε)x = 0 (35b)
ρ(x, y)vt − (K(x, y)ε)y = 0, (35c)

Where ε = −p/K is the strain. As we will see, the latter form may be advantageous in terms of the
accuracy that can be obtained.

We assume the material is homogeneous in each computational cell and apply an exact Riemann
solver at each interface; for details of this solver see e.g. [5].

3.1.1 One-dimensional acoustics

We first consider one-dimensional acoustic waves in a piecewise-constant medium with a single
interface. Namely, we solve (34) on the interval x ∈ [−10, 10] with

(ρ, c) =
{

(ρl, cl) x < 0
(ρr, cr) x > 0

We measure the convergence rate of the solution in order to verify the order of accuracy for smooth
solutions. The initial condition is a compact, six-times differentiable purely right-moving pulse:

p(x, 0) =
((x− x0)− a)6((x− x0) + a)6

a12
ξ(x− x0)

u(x, 0) = p(x, 0)/Z(x)

where

ξ(x− x0) =
{

0 for |x− x0| > a)
1 for |x− x0| ≤ a.
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with x0 = −4 and a = 1. This condition was chosen to be sufficiently smooth to demonstrate the
design order of the scheme and to give a solution that is identically zero at the material interface
at the initial and final times.

Table 1 shows L1 errors and convergence rates for propagation in a homogeneous medium with
ρl = cl = ρr = cr = 1. Here we use componentwise reconstruction. Specifically, we compute

EL1 = ∆x
∑
i

|Qi − Q̄i| (36)

where Q̄i is a highly accurate solution cell average computed by characteristics or by using a very fine
grid. For the acoustics problems in this section, Q̄ is computed using characteristics and adaptive
Gauss quadrature. Table 1 indicates that in each case, the order of convergence is approximately
equal to the design order of the discretization.

Table 1: Errors for homogeneous acoustics test

SharpClaw Clawpack
mx Error Order Error Order
200 3.60e-02 4.10e-02
400 3.65e-03 3.30 1.30e-02 1.66
800 1.85e-04 4.31 3.61e-03 1.85
1600 7.35e-06 4.65 8.94e-04 2.01

To test the accuracy in the presence of discontinuous coefficients we take

ρl = cl = 1 ρr = 4 cr = 1/2,

with an impedance ratio of Zr/Zl = 2. As was noted in [1], this system can also be solved in
the conservative form (35) using the f -wave approach. We include results of this approach, where
we have also performed characteristic-wise rather than component-wise reconstruction. Results are
shown in Table 2. In this case all schemes exhibit a convergence rate below the formal order, even
though the initial and final solutions are smooth. To investigate this further, we repeat the same
test with a wider pulse by taking a = 4. Results are shown in Table 3.

For the latter test, we observe a convergence rate of approximately two for SharpClaw, one for
Clawpack, and five for SharpClaw using the f -wave approach and characteristic-wise reconstruction.
The last convergence rate is remarkable, considering that the solution is not differentiable when it
passes through the material interface. Further investigation of the accuracy of this approach for
more complicated problems with discontinuous coefficients is ongoing. In tests not shown here,
Clawpack achieves approximately second-order accuracy when used with an f -wave Riemann solver
for this problem.
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Table 2: Errors for acoustics interface with narrow pulse

SharpClaw SharpClaw f -wave Clawpack
mx Error Order Error Order Error Order
200 2.10e-01 9.50e-02 1.98e-01
400 5.98e-02 1.81 1.42e-02 2.74 7.26e-02 1.45
800 1.25e-02 2.26 1.42 e-03 3.32 2.21e-02 1.71
1600 1.17e-03 3.42 1.20e-04 3.56 7.86e-03 1.49

Table 3: L1 Errors for acoustics interface problem with wide pulse (a=4)

SharpClaw SharpClaw f -wave Clawpack
mx Error Order Error Order Error Order
200 9.67e-03 5.01e-03 5.23e-02
400 2.01e-03 2.27 4.63e-04 3.44 2.32e-02 1.17
800 4.89e-04 2.04 2.51e-05 4.36 1.09e-02 1.09
1600 1.22e-04 2.00 6.49e-07 5.12 5.26e-03 1.05

3.1.2 A Two-dimensional sonic crystal

In this section we model sound propagation in a sonic crystal. A sonic crystal is a periodic structure
composed of materials with different sounds speeds and impedances. The periodic inhomogeneity
can give rise to bandgaps – frequency bands that are completely reflected by the crystal. This
phenomenon is widely utilized in photonics, but its significance for acoustics has only recently been
considered. Photonic crystals can be analyzed quite accurately using analytic techniques, since
they are essentially infinite size structures relative to the wavelength of the waves of interest. In
contrast, sonic crystals are typically only a few wavelengths in size, so that the effects of their finite
size cannot be neglected. For more information on sonic crystals, see for instance the review paper
[17].

We consider a square array of square rods in air with a plane wave disturbance incident parallel
to one of the axes of symmetry. The array is infinitely wide but only eight periods deep. The
lattice spacing is 10 cm and the rods have a cross-sectional side length of 4 cm, so that the filling
fraction is 0.16. This crystal is similar to one studied in [18], and it is expected that sound waves
in the 1200-1800 Hz range will experience severe attenuation in passing through it, while longer
wavelengths will not be significantly attenuated.

A numerical instability very similar to that observed in 1D simulations in [4, 5] was observed
when the standard Clawpack method was applied to this problem. The fifth-order WENO method
with characteristic-wise limiting showed no such instability.

17



Figure 3: Pressure in the sonic crystal for a long wavelength plane wave incident from the left.
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Figure 4: Pressure in the sonic crystal for a long wavelength plane wave incident from the left.

Figure 3 shows the RMS pressure for a plane wave with k = 15 incident from the left. This wave
has a frequency of about 800 Hz, well below the partial band gap. As expected, the wave passes
through the crystal without significant attenuation. In Figure 4, the pressure is plotted along a slice
in the x-direction approximately midway between rows of rods.

Figure 5 shows the RMS pressure for an incident plane wave with with frequency 1600 Hz, inside
the partial bandgap. Notice that the wave is almost entirely reflected, resulting in a standing wave
in front of the crystal. Figure 6 shows the RMS pressure along a slice in the x-direction.

3.2 Nonlinear Elasticity in a Spatially Varying Medium

In this section we consider a more difficult test involving nonlinear wave propagation and many
material interfaces. This problem was considered previously in [14] and studied extensively in [15].
Solitary waves were observed to arise from the interaction of nonlinearity and an effective dispersion
due to material interfaces in layered media.

Figure 5: RMS pressure in the sonic crystal for a plane wave incident from the left.

18



−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

2

4

6

8

10

12
RMS Pressure at y=−0.5

x

R
M

S
 P

re
ss

ur
e

Figure 6: RMS pressure in the sonic crystal along a slice.

Elastic compression waves in one dimension are governed by the equations

εt(x, t)− ux(x, t) = 0 (37a)
(ρ(x)u(x, t))t − σ(ε(x, t), x)x = 0. (37b)

where ε is the strain, u the velocity, ρ the density, and σ the stress. This is a conservation law of
the form (??), with

q(x, t) =
(

ε
ρ(x)u

)
f(q, x) =

(
−u

−σ(ε, x)

)
. (38)

Note that the density and the stress-strain relationship vary in x. The Jacobian of the flux function
is

f ′(q) =
(

0 −1/ρ(x)
−σε(ε, x) 0

)
. (39)

In the case of the linear stress-strain relation σ(x) = K(x)ε(x), (37) is equivalent to the one-
dimensional form of the acoustics equations considered in the previous section.

We consider the piecewise constant medium studied in [14, 15]:

(ρ(x),K(x)) =
{

(1, 1) if j < x < (j + 1
2) for some integer j

(4, 4) otherwise, (40)

with exponential stress-strain relation

σ(ε, x) = exp(K(x)ε)− 1. (41)
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Figure 7: Comparison of Clawpack (red circles) and SharpClaw (blue squares) solution of the
stegoton problem using 24 cells per layer. For clarity, only every third solution point is plotted.
The black line represents a very highly resolved solution.

The initial condition is uniformly zero, and the boundary condition at the left generates a half-cosine
pulse.

We solve this problem using the f -wave solver developed in [14]. Figure 7 shows a comparison
of results using Clawpack and SharpClaw on this problem, with 24 cells per layer. The SharpClaw
results are significantly more accurate.

Solutions of (37) are time-reversible in the absence of shocks. As discussed in [7, 9], the effective
dispersion induced by material inhomogeneities suppresses the formation of shocks, for small am-
plitutde initial and boundary conditions, rendering the solution time-reversible for very long times.
This provides a useful numerical test. We solve the stegoton problem numerically up to time T ,
then negate the velocity and continue solving to time 2T . The solution at any time 2T − t0, with
t0 ≤ T , should be exactly equal to the solution at t0. We take T = 600 and t0 = 60. Figure 8(a)
shows the solution obtained using SharpClaw on a grid with 24 cells per layer. The t = 1140 solu-
tion (squares) is in excellent agreement with the t = 60 solution (solid line). In fact, the maximum
point-wise difference has magnitude less than 2× 10−2. Using a grid twice as fine, with 48 cells per
layer, reduces the point-wise difference to 1× 10−3. The Clawpack solution, computed on the same
grid (24 cells per layer), is shown in Figure 8(b). Again, the SharpClaw solution is noticeably more
accurate. For a more detailed study of this time-reversibility test, we refer to [9].

3.3 Shallow Water Flow

In order to show the capabilities of the proposed scheme to deal with nonlinear problems with source
terms, the shallow water equations are also considered. The conservative form of the depth-averaged
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Figure 8: Comparison of forward solution (black line) and time-reversed solution (symbols).

equations of mass and momentum in two space dimensions can be written as follows:

ht + (hu)x + (hv)y = 0 (42a)

(hu)t +
(

1
2
hu2 +

1
2
gh2

)
x

+ (huv)y = −ghbx (42b)

(hv)t + (huv)x +
(

1
2
hv2 +

1
2
gh2

)
y

= −ghby, (42c)

where h, u and v are the depth of the fluid and the velocity components in x and y directions,
respectively. The function b(x, y) is the bottom elevation and g is constant for gravitational accel-
eration.

In the following section, two test cases are presented: a radially symmetric dam-break problem
over a flat bottom topography (b = 0) and a small perturbation of a steady state over a hump.

3.3.1 Radial dam-break problem

This problem consists in computing the flow induced by the instantaneous collapse of an idealized
circular dam. It is widely used to benchmark various numerical techniques that tend to simulate
interfacial flows and impact problems.

The dam, which is an infinitesimally thin circular wall with a radius of 0.5, is located at the
center of a square computational domain of 2.5× 2.5. The water level is initially h = 2.0 inside the
circle and h = 1.0 outside. The initial solution has zero discharge, i.e. both velocity components
are zero. The dam is removed at time t = 0. This tests the ability of the method to compute the
2D propagation of nonlinear waves and the extent to which symmetry is preserved in the numerical
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solution. In the presence of radial symmetry, system (42) can be recast in the following form:

ht + (hU)r = −hU
r

(43a)

(hU)t +
(

1
2
hU2 +

1
2
gh2

)
r

= −hU
2

r
, (43b)

where h is still the depth of the fluid, whereas U and r are the radial velocity and the radial
position. An important feature of these equations is the presence of a source term, which physically
arises from the fact that the fluid is spreading out and it is impossible to have constant depth and
constant non-zero radial velocity.

A first comparison between SharpClaw and Clawpack is performed by solving the 1D system
(43) on the interval 0 ≤ r ≤ 2.5. A wall boundary condition and non-reflecting boundary condition
are imposed at the left and the right boundaries, respectively. The final time for the analysis is
taken to be t = 1. The classical q-wave Riemann solver based on the Roe linearization is used to
solve the Riemann problem at each interface (see for instance [12] for details), where the left and the
right states are computed by using the characteristic-wise WENO reconstruction. The gravitational
acceleration is set to g = 1. A highly resolved solution obtained with Clawpack on a grids with
25, 600 cells is used as a reference solution. The q-wave Riemann solver

It is well-known that formal order of accuracy is lost in a shock wave propagating in a coupled
system of equation [16] and in general it is reduced to first-order. However, if we plot the difference
between the computed solution available at the cell’s center and the reference solution conservatively
averaged on the same grid, i.e. Ei = |Qi− Q̄i|, then we can visualize where the errors are largest as
well as their spatial structure. Figure 9 shows this difference, for a grid with 800 cells. The largest
errors in both solutions are near the shocks. In the smooth regions, the SharpClaw solution is more
accurate than that of the Clawpack code.

Next we consider the same problem using the full 2D equations (42). The SharpClaw and
Clawpack codes are tested on two grids with 125× 125 and 500× 500 cells. The final time for the
analysis is again taken to be t = 1.

Figure 10 shows the water height h at t = 1.0. The 1D reference solution used before is
also plotted for comparison. Clawpack results (not shown) indicate similar accuracy and similarly
good symmetry, show that the solutions are similar and both schemes can preserve a good radial
symmetry, though they cannot resolve the shock near the origin. The grid is in fact too coarse.

The solutions obtained on the finer grid (500 × 500 cells) are shown in Figure 11. The effect
of the grid refinement is clearly visible. In fact, the solutions gets close to the reference solution.
However, the density of the grid near the origin is still coarse to resolve well the shock near the
origin.

3.3.2 Perturbation of a steady state solution

Conservation laws with source terms often have steady states in which the flux gradient are non-
zero but exactly balanced by source terms. A good numerical scheme, should be able to preserve

22



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Pointwise L
1
 error norm at time 1.0000

Figure 9: Pointwise absolute error for the water height h on a grid with 800 cells. SharpClaw
solution: continuous line; Clawpack solution: dashed line.

Figure 10: Solution for the 2D radial dam-break problem on a grid with 125× 125 cells, plotted as
a function of radius.
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Figure 11: Solution for the 2D radial dam-break problem on a grid with 500× 500 cells, plotted as
a function of radius.

such steady states and calculate accurately small perturbations around these conditions. A classical
benchmark test case to investigate these properties is the small perturbation of a 2D steady state
water given by LeVeque [10].

System (42) is solved in a rectangular domain [0, 2]× [0, 1], with a bottom topography charac-
terized by an isolated elliptical shaped hump:

b(x, y) = 0.8 exp(−5(x− 0.9)2 − 50(y − 0.5)2).

The surface is initially flat with h(x, y, 0) = 1 − b(x, y) except for 0.05 < x < 0.15, where h is
perturbed upward by ε = 0.01. The initial discharge in both direction is zero, i.e. hu(x, y, 0) =
hv(x, y, 0) = 0. Non-reflecting (i.e., zero-extrapolation) conditions are imposed at all boundaries.
The gravitational acceleration is set to 9.81.

An effort was made to achieve a well-balanced scheme using the f -wave approach combined
with component-wise or characteristic-wise WENO reconstruction, but this was unsuccessful. This
is not surprising, since the algorithm begins by reconstructing a non-constant function. Figure 12
shows the contour levels of the solution at t = 0.06 and t = 0.12 on a fine grid with 600 × 300
cells, obtained with the f -wave Riemann solver and the component-wise reconstruction approach
as a building block for the WENO scheme. The scheme is not well-balanced and spurious waves are
generated around the hump. Similar results are obtained using characteristic-wise reconstruction.

In order to balance the scheme, the f -wave-slope reconstruction introduced in Section 2.7 is
used instead. In this approach, the WENO reconstruction is applied to waves computed by solving
Riemann problems with the f -wave solver. When the source term is included in these Riemann
problems, the resulting waves vanish exactly. Figure 13 shows the surface level a cross section along
y = 0.5 at time t = 0.06 computed with both reconstruction approaches (and the f -wave Riemann
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Figure 12: Contour of the surface level h + b at time t = 0.06 and t = 0.12. Component-wise
reconstruction approach. Contour levels: 0.99942 : 0.000238 : 1.00656.

solver) on a uniform mesh with 600× 300. It is seen that the f -wave-slope reconstruction method
keeps the surface flat, whereas the component-wise reconstruction introduces spurious waves which
have an amplitude of the order of the disturbance that we want to resolve.

Figure 14 shows the solution on two uniform meshes with 200 × 100 cells and 600 × 300 cells,
computed using the f -wave-slope reconstruction approach. The results clearly indicate that the
detailed structure of the evolution of such a small perturbation is resolved well even with the
relatively coarse mesh. In addition, these results agree with those reported in [10].

4 Conclusions

We have presented a general approach to extending the finite volume wave propagation algorithm
to arbitrary high order of accuracy in one and two dimensions. The algorithm is based on a
method-of-lines approach, wherein the semi-discrete scheme relies on high order reconstruction and
computation of fluctuations, including a total fluctuation term arising inside each cell. By using
WENO reconstruction and strong stability preserving time integration, high order accurate non-
oscillatory results are obtained, as demonstrated through a variety of test problems.

This algorithm has several desirable features. Like the second-order wave propagation algorithms
in Clawpack [11], it is applicable to general hyperbolic systems (e.g. non-conservative systems or
those with spatially varying flux function). It gives significantly better accuracy than Clawpack
for smooth problems. It has been shown to achieve high order accuracy even for problems with
discontinuous coefficients. Finally, the algorithm can be adapted to give a well-balanced scheme for
general balance laws by use of the f -wave approach and a new wave-slope reconstruction technique.

Hyperbolic systems of equations with both smooth and non-smooth solution have been used to
test the properties and the capabilities of the proposed method. The schemes have been compared
for the one dimensional equations of linear acoustic in different conditions, the one dimensional
nonlinear elastic equation in a spatially varying medium and the two dimensional shallow water
equations with and without bottom topography. Two types of Riemann solver have been used, i.e
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Figure 13: Surface level h + b along a cross section at y = 0.5 and time t = 0.06. Solid line:
f -wave Riemann solver and component-wise reconstruction; dashed line: f -wave Riemann solver
and f -wave-slope reconstruction.

the classical (q-) wave algorithm and the f -wave approach. The new scheme performed well for
all the test cases. For the one dimensional problems the SharpClaw results are significantly more
accurate than the Clawpack results, even for non-smooth solutions.

In two dimensions, the presented dimension-by-dimension reconstruction approach is formally
only second-order accurate for nonlinear systems of equations (see [21]); however, it gives improved
accuracy over the second-order scheme implemented in Clawpack for the test problems considered.
Further investigation of different approaches to multidimensional reconstruction for problems con-
taining both shocks and rich smooth flow structures is a topic of future research.
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